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Abstract

A pressure-based algorithm is developed and applied to compute turbulent sheet cavitating flows. Single-fluid
Navier-Stokes equations, cast in their conservative form, along with a volume fraction transport equation are
employed. The flow is computed in both phases with the vapor pressure recovered inside the cavity via a mass
transfer model. A pressure-velocity-density coupling scheme along with an upwinded density interpolation is
developed to handle the large density ratio associated with cavitation. The method is assessed through simulations of
cavitating flows over a cylindrical object and an airfoil. The results show satisfactory agreement with experimental
data in pressure distribution. In addition, information such as wall shear stress distributions and related velocity and
turbulence fields is highlighted for both axisymmetric projectile and NACA airfoil.

1 Introduction

Computational modeling of cavitation has been pursued for years. Early studies primarily utilize the potential flow
theory; they are still widely used in many engineering applications. Studies dealing with cavitation modeling
through the computation of the Navier-Stokes (N-S) equations have emerged in the last decade. A table
summarizing some of the selected studies is included in the appendix. A review of these studies is presented in
Senocak and Shyy (2001). To account for the cavitation dynamics in a more flexible manner, recently, a transport
model is developed. In this approach volume or mass fraction of liquid (and vapor) phase is convected. Singhal et al.
(1997), Merkle et al. (1998) and Kunz et al. (1999, 2000) have employed similar models based on this concept with
differences in the source terms. One apparent advantage of this model comes from the convective character of the
equation, which allows modeling of the impact of inertial forces on cavities like elongation, detachment and drift of
bubbles. Merkle et al. (1998) and Kunz et al. (1999, 2000) have employed the artificial compressibility method.
Kunz et al (1999, 2000) have adopted a non-conservative form of the continuity equation and applied the model to
different geometries. Their solutions are in good agreement with experimenta measurements of pressure
distributions. In these studies specia attention has been given to the preconditioning formulation in order to create a
robust artificial compressibility method

So far, in the open literature, there seems to be a lack of pressure-based methods for computing cavitating
flows. By pressure-based method, we mean that the pressure field is solved by combining the momentum and mass
continuity equations to form a pressure or pressure-correction equation (Patankar, 1980; Shyy, 1994) In the present
study, a pressure-based algorithm with conservative formulation, multi-block, curvilinear grid systems, is adopted to
compute cavitating flows. In particular, the coupling between velocity, pressure and density, for proper formulation
of the pressure correction equation for cavitating flow conditions will be discussed. The mass transport equation
cavitation model, such as that employed by Kunz et al. (1999, 2000) will be adopted.

In what follows, we first present the governing equations and main features of the cavitation model, and then
propose numerical schemes that ensure stable numerical computations. The presented results include simulations of
both noncavitating and cavitating flows around a cylindrical object with hemispherical headform and a NACA0012
airfoil.
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2 Theoretical Formulation

The set of governing eguations consists of the conservative form of the Reynolds averaged Navier-Stokes equations,
plus a volume fraction transport equation to account for the cavitation dynamics. The equations, written in the
Cartesian coordinates for the ease of presentation, are presented below.
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The mixture density and the turbulent viscosity are defined, respectively, as follows:
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For the turbulence closure, the origina k-€ turbulence model with wall functions is adopted (Jones and Launder,
1972).

Cavitation modeling

Physically, the cavitation process is governed by the thermodynamics and the kinetics of the phase change dynamics
occurring in the system. This complex phenomenon is modeled through m and m’ terms in Eqg. (3), which
represent evaporation and condensation of the phases, respectively, and results in a variable density field. Surface
tension and buoyancy effects are neglected considering the typical situation that Weber and Froude numbers are
large. The particular form of these phase transformation rates are adopted from Kunz et al. (1999). The values of the
empirical constants Cyeq and Cpoq fOr each simulation are presented along with corresponding figures and they are
different than the values reported in other studies using the same cavitation model. The sensitivity of the simulations
to these constants is also studied. The source terms that are adopted in this study are given below:
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The time scale in the equation is defined as the ratio of the characteristic length scale to the reference velocity
scale (I/U). The nomina density ratio (p/p,) is the ratio between thermodynamic values of density of liquid and
vapor phases at the corresponding flow condition; a value of 1000 is taken for this ratio in all computations in this
study.
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3 Numerical Method

The present Navier-Stokes solver, documented in Shyy (1994), Shyy et al. (1997) and Thakur et a. (1997) employs
a pressure-based algorithm and a finite volume approach to solve the fluid flow and energy equations, on multi-
block structured curvilinear grids in 2D and 3D domains. For the present cavitation model, Eq.(3), the volume
fraction transport equation with appropriate source terms given in Eq.(5), needs to be implemented into the solver.
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For further details of the pressured based method for cavitating flows the reader is referred to Senocak and Shyy
(2001).

Pr essur e-velocity-density coupling

In the pressure-based algorithm, the pressure correction equation has been revised to achieve successful solutions

for highly compressible flows (Shyy and Braaten 1988; Karki and Patankar 1989). In the cavitation model a
convection equation with pressure dependent source terms, Eq. (3), is solved to determine the density field. Because
of this coupling between pressure and density, the pressure correction equation needs to be reformulated, even
though the Mach number effect is not explicitly addressed in the model. Once the cavitation model is implemented
into a pressure-based algorithm, the pressure correction equation exhibits a convective-diffusive nature in cavitating
regions and purely diffusive nature in the liquid phase. In the present agorithm, the following relation between
density and pressure is introduced to establish the pressure-vel ocity-density coupling.

P =Cl-a,)P (6)

where C is an arbitrary constant. It should be emphasized that the choice of this constant does not affect the final
converged solution because of the nature of the pressure correction equation. It is found that avery large value for C
can destabilize the computation in early stage of the iteration process. For this reason, we suggest C=0(1) be used.
In our computations, C=4 is adopted. The above scheme results in a combined incompressible-compressible
formulation that preserves the incompressible nature in the liquid phase. In the cavitating region, it accounts for the
pressure-density dependency in a nonlinear fashion, in accordance with the local value of a;. This modification is
key to a stable computation in which the uniform vapor pressure is recovered in the final converged solution.

Another aspect is that, similar to compressible flow computations, the density at the cell face is upwinded
(Shyy, 1994). The criterion for upwinding is based on the value of liquid volume fraction; that is, wherever a; isless
than 1.0, the cell-faced density value is estimated based on an upwinded formula. This treatment significantly
improves the convergence level and has a stabilizing effect in the vicinity of sharp density gradients.

It should also be emphasized that Eq. (6) is not limited to the cavitation model employed in this study; it can
easily be adopted for other cavitation models. For example, if an equation of state is utilized to generate the variable
density field, then vapor or mass fraction can be derived from density values and used in Eq. (6) to establish the
pressure-density coupling.

4 Results and Discussions

Cavitating flows over two different geometries, an axisymmetric object with a hemispherical headform, and a 2-D
wing with the NACA0012 airfoil have been studied. The corresponding Reynolds number is 1.36x10°, based on the
diameter, for the hemispherical object, and 2x10°, based on the chord, for the NACA0012 airfoil. Since the steady-
state assumption is sensible for sheet cavitation, which has a quasi-steady behavior, with most of the unsteadiness
localized in the rear closure region (Knapp, 1970; Gopalan and Katz, 2000), the steady state model is adopted in
present computations.

Simulations of flow over a hemispherical object

Figure 1 demonstrates the predictive capability of the model at cavitation numbers of 0.40 and 0.30 through
comparison with experimental data of Rouse and McNown (1948). Identical model parameters are adopted for both
cavitation numbers. The pressure distribution corresponding to the noncavitating condition is also plotted for
comparison. The present numerical algorithm performs well for both cavitating and noncavitating conditions. The
corresponding cavity profiles, streamlines and computed density ratios are also presented in Figure 5. The computed
cavity profiles are in the form of pinched pockets with reentrant jets in the closure region. With a lower cavitation
number (0=0.30), the cavity, as expected, becomes larger than that with a cavitation number (0=0.40). The reentrant
jet is aso stronger suggesting that at lower cavitation numbers the reentrant jet can easily perturb the cavity,
possibly leading to shedding of bubbles. The computed density ratio is higher for 6=0.30 because, the source terms
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are effective on more grid points. The cavity detachment point remains fixed in both of the simulations, which is
also in agreement with experimental data.

In Figure 2, the sengitivity of the solutions to model parameters is studied. It can be seen that even increasing
these parameter by an order of magnitude has little effect on the pressure coefficient predictions. However, the
computed density ratio is noticeably different between these model parameters. Clearly, the computed density ratios
can be controlled through adjustment of the model parameters to yield very different solutions while pressure
predictions remain little unaffected. The density profiles indicate a sharp discontinuity at the closure region with a
reentrant jet located downstream of it, which possibly explains the reason of localized surface erosion in the closure
region of sheet cavities.

In Figure 3 the effect of cavitation on wall shear stress distribution is studied. By comparing the skin friction
coefficient of both noncavitating and cavitating conditions, one can see that the existence of cavitation not only
aters the flow structure inside the cavity but it also affects the downstream flow. The turbulent viscosity
distributions indicate that the reentrant jet gets more dissipative as the cavitation number is lowered. This suggests
that the viscous effects can play an important role on the overall cavity behaviour such as the reattachment location.
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Figure 1. Comparison of pressure coefficient distributions for hemispherical object under noncavitating and
cavitating conditions (Cgeq=9x10°, Cpr0d=3x104, A/0,~=1000). Experimental datais from Rouse and McNown (1948).
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Figure 2. Sensitivity of modeling parameters for the hemispherical object at 0=0.40 (0/0,=1000). Experimental
datais from Rouse and McNown (1948).

Simulations of flow over a NACAQ0012 airfoil

Figure 4 demonstrates that the presented pressure based method and the cavitation model is also performing well on
asignificantly different geometry. Moreover same values for Cyey and C,oq have been utilized in this case. The
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pressure distribution along with the cavity shape is plotted in Figure 3. The angle of attack is 1° and the cavity
occurs at mid chord with a corresponding cavitation number of 0.42. These conditions and the overall behavior of
the cavity are consistent with the experimental study of Shen and Dimotakis (1989) in which the NACA66MOD
airfoil is investigated. The corresponding vapor pressure is successfully recovered inside the cavity region that is
also consistent with our results of hemispherical object. Unlike the hemispherical object no reentrant jet is observed
in this case, possibly because the cavity isin the form of athin layer.

0.012

— noncavitating
- 0=0.30

0.01
‘ ."f Noncavitating

0.008

g 0.006

)

0.004 -

"I- 0=0.40

0.002 -

0=0.30

7

Figure 3. Effect of cavitation on wall shear stress. Corresponding turbulent viscosity distributions are on the right
part of the figure.
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Figure 4. Sheet cavitation on NACA 0012 airfoil at 0=0.42, A/0in=8 (Cues=9%10°, Cproi=3x10%, p1/2,=1000).
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5 Conclusions

Single-fluid Navier-Stokes equations, cast in their conservative form, along with a volume fraction transport
equation are employed to model cavitating flows over a cylindrical object and a NACAQ0012 airfoil. The flow is
computed in both phases with the vapor pressure recovered inside the cavity via a mass transfer model. A pressure-
velocity-density coupling scheme is developed and implemented into a pressure-based agorithm to compute
cavitating flows. The proposed coupling scheme along with density upwinding for cavitating regions is the key to
stable computations of cavitating flows.

Combined with the multiblock and curvilinear grid systems, the present flow solver can handle large density
ratios and complex geometries. For the turbulent flows with sheet cavitation, the density profiles indicate a sharp
discontinuity at the closure region with a reentrant jet located downstream of it. As the cavitation number is lowered
the reentrant jet gets stronger and more dissipative. While the pressure distribution is less sensitive to model
parameters, density distribution exhibits a higher sensitivity to them. Identical cavitation model parameters are used
for the hemispherical object and the NACAQ012 airfoil suggesting that the present cavitation can be employed for
further applications.

The future work will concentrate on applying the method to simulate different forms of cavitation such as cloud
and supercavitation, and to investigate the flow physics to gain better understanding.
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NOMENCLATURE

Symbols

C arbitrary constant

Cuestr Cprod empirical constantsin Eq.(5)
Cr pressure coefficient

m evaporation rate

M condensation rate

Ui velocity in Cartesian coordinates
Xi Cartesian coordinates

P pressure

P pressure correction

Uo, Us u-velocity at areference point
t, to time, mean flow time scale
a volume fraction

Tl laminar viscosity

s turbulent viscosity

Vy kinematic viscosity

Pm mixture density

p' density correction

(o] cavitation parameter
Subscripts, Super scripts

I liquid phase

v vapor phase

00 freestream
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Appendix
Table 1. Overview of selected studies on numerical simulations of cavitating flows based on the solution of N-S
equations.
NUMERICAL APPLICATIONS/MAIN
AUTHORS CAVITATION MODEL ALGORITHM FINDINGS
Rayleigh-Plesset (R-P) equation is
coupled to the Poisson equation. Marker and Cell Cloud cavitation on hydrofails.

Kubotaet al. (1992

Cavity region ismodeled as
compressible fluid with variable
density

3-D N-Seqguations
No turbulence model.

Numerical instability for high-
density ratio. Re=3x10°

Chen and Heister
(1994)

Interface tracking based on P=P,,
Grid conformsto the cavity shape.

Marker and Cell
2-D N-S equations
No turbulence mode

Pressure distribution on
axisymmetric geometries.
Re=1.36x10°

Chen and Heister
(1996)

Time and pressure dependent
pseudo-density equation.

Marker and Cell
2-D N-S eguations
No turbulence model

Pressure distribution on
axisymmetric geometries.
Re=1.36x10°

Interface tracking based on P=P,,

Artificial Compressibility

Sheet cavitation for cryogenic

model

E)legsggande etd. with mass transfer. 2-D N-S eguations fluids. Studied the thermal

Grid conforms to the cavity shape No turbulence model boundary layer over cavity.
) . . . Pressure-based Pressure distribution and

(Siggf;;:\l e Vrgrrgzss ;agg{%nsgﬂl:?g ?enrr\;v;t " 2-D N-S equations discharge coefficient for orifices

P P k-g turbulence model and hydrofoils. Re=2.x10°
Artificial Compressibility
Merkleet al. Vapor mass fraction equation with | 2-D N-S equations Pressure distribution on
(1998) pressure dependent source terms. Two equation turbulence hydrofails.

Kunz et al. (1999,
2000)

Volume fraction equation with
pressure dependent source terms
Nonconservative continuity
equation. Preconditioning strategy.

Artificial Compressibility
3-D N-Seqguations
k-€ turbulence model

Pressure distribution on
axisymmetric geometries.
Re=1.36x10°

Ahujaet a. (2000)

Vapor mass fraction equation
pressure dependent source terms.
Preconditioning strategy.
Adaptive unstructured meshes

Artificial Compressibility
3-D N-Sequations
k-g turbulence model

Simulations of cavitating flow
over hydrofoils (Re=2x10% and
axisymmetric geometries.
(Re=1.36x10°).

Temperature distribution is

Artificial Compressibility

Pressure distribution on
axisymmetric geometries.

tables.

No turbulence model

Edwards et al. computed to determine density 3-D N-S equations Revorted poor converaence and
(2000) variation based. Sanchez-Lacombe | Spalart-Allmaras one- ep P g
equation of state. equation model pressure overshoots |5n closure
regions. Re=1.36x10
Temperature distribution is Pressure-based Pressure distribution over
Ventikos and computed to determine density 2-D N-S equations airfoils. Re=2000 in
Tzabiras (2000) variation based on steam-water computations while Re=2.5x10°

in experiments

Venkateswaran et

Discussed the preconditioning
strategies utilized in

Artificial Compressibility
3-D N-Sequations

Pressure distribution on
axisymmetric geometries.

upwinded density interpolation in
cavitating regions.

turbulence model

al. (2001) Kunz et al.*” *® and Ahujaet d.*° k-€ turbulence model Re=1.36x10°
Volume fraction equation with e
pressure dependent source terms. Pressure-based E;ﬁjrerﬁaffgsgg:ﬁg“ on
Senocek and Shyy | Developed a pressure-density 3-D N-Sequations The desr>1/sj ¢ Iotsgi]n dicate a.
(2001) coupling scheme and employed Different versions of k-€ yp

sharp discontinuity at the closure
region. Re=1.36x10°




