*
Algorithmic Tayout of Gate Macros

Daniel D. Gajski
Avinoam Bilgory
Joseph Luhukay

Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

The rapid advancement of VLST technology necessitates unew implemen-
tation methodologies with design automation capabilities. Existing
implementation styles such as master slice, programmable logic arrays
and custom design with cell library do not achieve the best tradeoffs
between circuit density and chip development cycle time. The implemen—
tation *methodology based on register-transfer building blocks called
gate macros can be used to drastically cut down the design time. Furth-
ermore, the gate macros which generally represent functional entities
like registers, adders, busses, logic units etc. are subjective to algo—

rithmic or totally automatic layout [Verg80], [Joha79].

This paper describes the basic modules of a gate-to-silicon com-
pller which accepts as its input a high level description of gate macros
and generates a layout that satisfies particular technology (NMOS, for
example) and enviroumental parameters (layout area or time delay, for

example). The input to the gate-to-silicon compiler are the set of

* This work was supported in part by the NSF under grant
No. US NSF MCS80-01561

CALTECH CONFERENCE ON VLSI, January 1981

238
paniel D. Gajski, Avinoam Bilgory and Joseph Luhukay

macros generated at the register transfer level. High-level language
constructs like DO loops and IF statements are allowed 1n the 1input
language. However, only Boolean scalars, vectors and striungs are

allowed. For example, a 16-bit blnary adder can be described as fol-

lows:
5,° Cc(0) = CIN
DO I = 1,16
8yt C(I) = A(I)*B(I) + (A(I) + B(I))*C(I-1)
841 S(I) = A(1) & B(I) &® C(I-1)
END
S, COUT = C(16)

The above description can be used for variety of implementation
styles. For example, 1f the delay time specified is relatively slow
with respect to technology used the 32-bit adder will be implemented as
a ripple-carry adder. 1If a faster version is required the look-ahead-
carry adder will be used. For different delay times different number of
bits will be looked ahead. Similarly, different layouts will be produced
for different time delays.

The compiler consists basically of four modules (Figure 1):

1. Boolean Analyzer partitions the input description into blocks

with easily recognizable structure. For example, the statements S. and

L
52 will be recognized as a recurrence system while the statement 53 is
detected to be a vector operation. Statement S, is detected as a scalar

4
operation. Furthermore, the Boolean Analyzer generates the dependence

graph with statements as vertices and dependences as edges. The depen—

dence graph represents the internal structure of the gate macro. It

MYAMDIITMMIPD A TNHDDD DIDDOTAAY OO TAN

Algorithmie Layout of Gate Macros ok

High Level Language description of gate macros

[Boolean Analyzqu

Cell Generator

[Pependence Graph Refiner]

[Subcell Generator]

¥
[Cell Binder =

lParameters EvaluationJ

Cell Layout
| Symbolic Placement]
t

[Layout Generator}e

[Timing Evaluation]

[Structure Generator|

Figure 1. Block diagram of a gate-to-silicon compiler.

indicates the critical time delay and cell structure of the Ffuture lay-

out alternatives.

2. Cell Generator modules consist of Dependence Graph Refiner,

Subcell Generator and Cell Binder.

The Dependence Graph Refiner tries to break each of the dependence

graph nodes into as many nodes as possible. The resulting dependence

CALTECH CONFERENCE ON VLSI, January 18981

240
Daniel D. Gajski, Avinoam Bilgory and Joseph Luhukay

graph is more detailed, which allows the Cell Binder more flexibility in
optimization. Since statements Sl and S, are scalar operations without
operators their layout area and time delay are 0(¢) where = is a small
value, so they are left untouched. Statement 82 is a recurrence with
maximum O(n log n) layout area and minimum O(log n) time delay where n
is the recurrence length. Since the recurrence node will be broken into
three or more different types of subcells, its decomposition is left to
the Subecell Generator. Statement 33 has an 0(n) layout area and O(l)
time delay. Since the EXCLUSIVE-OR operation is associative, statement
33 can be dissolved into S3a and S3b' Using the above approximation the

original program is distributed as shown below.

31: Cc(0) = CIN
DO I = 1,16

Syt C(I) = A(T)*B(I) + (A(I) + B(I))*C(I-1)
END
DO I = 1,16

538: T(I) = A(L) @ B(I)
END
DO I = 1,16

Sqp S(I) = T(I) & Cc(1I-1)
END

54: CouT = C(16)

The new dependence graph (s shown in Figure 2.

The Subcell Generator consists of several submodules, each for one
type of a block recognized by the Boolean Analyzer. Each submodule gen-
erates the functional description of the basic subcells used to syn-

thesize the given block. The recurrence statements S1 and 52 generate

COMPUTER-AIDED DESIGN SESSION

Algorithmic Layout of Gate Macros

Figure 2. Dependence graph of distributed program.

four types of subcells:

type 2.1 subcell: G = A*B
type 2.2 subcell: P=A+B

. = * = *
type 2.3 subcell: G G1 + G2 P, B = PP,
type 2.4 subcell: C =G + P*C

0

A description of cell generation for recurrence structures is found in

[BiGaB80]. Statements SSa and S3b generate one type of subcell each,
called type 3a and 3b subcells, respectively.

The Cell Binder combines subcells to form larger cells. The sub—
cells to be combined are selected according to the constraints posed by
the dependence graph. Since type 2.1 and 2.2 subcells (generated for the
recurrence) perform vector operation as well as type 3a subcell, the
three can be combined to form one cell called type 1 cell. Type 2.4 and
3b subcells can also be combined into one cell, but it was not done in

this example, so type 2.3, 2.4 and 3b subcells will each be assigned one

CALTECH CONFERENCE ON VLSI, January 1981

242
paniel D. Gajeki, Avinoam Bilgory and Joseph Luhukay

type of cell and renamed as type 2, 3 and 4 cells, respectively. The
layout occupies minimum area when all the cell types have similar
widths. So, if the Structure Generator finds, for example, type 1 cell
to be too large, a separate cell type may be dedicated to subcell 3a.
Since SBa is not on a critical path, this cell can be positioned almost

anywhere in the layout in that case.

3. Cell Layout modules consist of Symbolic Placement and Layout

Generator.

The Symbolic Placement module generates a two—dimensional array of
symbolic translstors and their connectlions. Compaction is done automat-
ically when this two—dimensional array is translated by the Layout Gen-—
erator Iinto a complete mask description in compliance with layout design

rules of the chosen technology.

Each cell can be manually designed 1if so desired, 1leaving the
placement and routing to be automatically performed by the system. The
manual cell design presents one extrzwe of the provided 1layout design
space [MeCo80]. However, the overall aim is to have an automatic layout
system, where a manual cell design or a cell library is replaced by the
library of algorithms in which one or more algorithms for automatic gen-
eration of layout specifications are available for each cell model sup-
plied by the Cell Generator module. Tt then follows that the algo—

rithmic layout is the other extreme of the layout design spectrum.

For example, an obvious approach would be to implement each cell
with a small programmable logic array. The MOS and TZL technologies are
well adaptable to automatic synthesis as shown in [SOHT80] for one-

dimensional gate arrays. We have chosen a two-dimensional array

approach as described below.

COMPUTER-AIDED DESIGN SESSION

Algorithmie Layout of Gate Macros

The Symbolic Placement module is based upon a grid system of tracks
- or channels - on different layers of the integrated circult structure.
Interaction among the layers is governed by the technology, and as a
result, geometric relationship among the tracks is determined by the
technology”s layout design rules. Figure 3 shows a grid system which 1is
used for silicon-gate MOS.

szl T i) =

polysilicon

e Ll S R I e e

Figure 3. Sample grid system for MOS technology.

Here the metal layer is more or less 1independent of the polysilicon and
the diffusion layers, whereas polysilicon and diffusion interact
strongly with each other. Hence polysilicon and diffusion tracks can be
"hidden"” underneath metal tracks. Using this 3zrid as a base, synthesis
procedures have been developed. For example, using a metal and polysili-
con grid like in Figure 3, two—dimensional arrays can be formed by mani-
pulating the diffusion to form the necessary devices, 1interconnected

such as to build the required circuit.

CALTECH CONFERENCE ON VLSI, January 1981

244
Daniel D. Gajski, Avinoam Bilgory and Joseph Luhukay

Flgure &4 shows the processes implemented by the Cell TLayout
modules. Input to the Symbolic Placement module consists of functional
description of a cell (or a set of cells), in the form of a set of AND-
OR-INVERT Boolean equations. In additlon to this, basic topological
information about the cell is also given, which comprises assignment of
topological attributes to the input-output nodes of the cell. For exam—
ple, the cell shown In Figure 5(b) was specified with El’ ?1 and T
(ordered from left to right) as top—inputs coming in polysilicon, G2 and
52 (ordered from top to bottom) as right-inputs coming in metal, G, P
and T (ordered from left to right) as bottomoutputs going out in
polysilicon, and G and P (ordered from top to bottom) as left-outputs
going out in metal. The functional description specified for the cell

: = 0. *%p G.*G - - B P T =T
is: G Gl Pl ¥ Gl GZ’ P P1 + P2 and T T.

1f the I/0 nodes ordering along the cell boundaries is fixed, such
as 1in our case, then the Symbolic Placement module will start by order—
ing product-terms within an AND-OR-INVERT function, and also of the
drive-transistors within a product-term. Otherwise, the module will
first generate a symbolic placement of the functions themselves. The

ordering™s goal is to minimize the cell”s height by reducing the number

of horizontal tracks needed to lay out the cell. In our example, we
need to place the product-terms of function G (G *P1 and 51*52), func-
tion P (P and P ,) and Eunction T (T), such that Gy» Pl and T - which

come in polysillcon — need not traverse any unnecessary vertical diffu-
slon tracks. This is done by identifying the polysilicon input variable
shared by both functions (here: 51) and ordering the product terms such
that metal crossovers for the polysilicon input variables (to get over

diffusion tracks) are wminimized. The following table shows how this

process is done:

COMPUTER-AIDED DESIGN SESSION

Algorithmie Layout of Gate Maeros

Transistor
sizes

Functlonal description
+

Basic topological description

/0 nodes

preassigned
?

Yes

245

Gate
Symbolic
Placement

Product—-term

Symbolic placement

Drive-transistor

Symbolic placement

Layout of:

|

diffusion product-term tracks
input nets & drive transistors
load structures

output nets

inverter structures

;

mask description

CALTECH CONFERENCE ON VLSI,

Symbolic Placement

Layout Generator

Figure 4. Block diagram of the Cell Layout modules.

January 1981

246

Daniel D. Gajski, 4vinoam Bilgory and Joseph Luhukay

ol

C; B, T - 6, B ®

G: Gl*Pl I 1 @ G: El*fz 1 0 0

EI*GZ 1 0 O SI*PI 1 1 0

P P1 0 1 0 P fl 0 1 0

) 32 0 0 O) Ez 0 0 0

b - R 0 0 1 T: T 0 0 1
Before ordering After ordering

The output of the Symbolic Placement module 1is a table denoting
relative placement of transistors on the reference grid system, and
net-lists for the inputs and outputs. For our example, the table will

be as follows:

where columns denote vertical diffusion tracks, and rows denote horizon-

tal polysilicon tracks.

The Layout Generator uses the symbolic placement data to generate
the masks, described in an intermediate Eorm like the CIF [MeCo80]. It
generates the rectangles necessary to lay out the masks: diffusion
product—-term “tracks”, 1input nets and drive translstors, load struc-
tures, output nets, and inverter structures. Figure 5 shows the simu-

lated layout of four types of cells used in our example.

Rather than predefining device parameters and then laying them out

using a placement and routing scheme, the circuits are first laid out in
an array—-like structure with minimum device sizes. The electrical and

geometrical parameters are passed on to the next module. Iteration of

COMPUTER-AIDED DESIGN SESSION

a4
Algorithmie Layout of Gate Macros

gl @l

L. I 1
.] | m
(1_[] lEI
DA‘ e/

o
] =3
G
5
[1o
—=

I
ﬂiz T

8§ = O*T + O¥*T

(a)

Figure 5. Layout of adder” s basic cells:
(a) Type 2a cell; (b) Type 2b cell;
(¢) Type 3 cell; (d) Type 4 cell.

CALTECH CONFERENCE ON VLSI, January 1981

248
Daniel D. Gajski, Avinoam Bilgory and Joseph Luhukay

the process will produce the desired circuit with the device sizes

necessary to meet the design goals.

I}

4. Structure Generator attempts to obtain the best possible struc-

ture [or the given functional description and environmental parameters.
1t specifies the cell types, the position of each cell in the final lay-

out and the intercounnections between the cells.

Figure 6 shows the structure of a 16-bit binary adder. Each cell
will be refered to as C[1i,]j], where L and j are the row and column where
the cell is located, respectively, and the top rightmost cell is C[1,1].
Data are flowing only €from top to bottom and from right to left. The
four types of cells generated by the Cell Generator are located as fol-
lows: type 1 cells in the first row, type 2 in the second and third
rows, type 3 in the fourth row and type 4 in the Eifth row. The second,

third and fourth rows perform the carry-look-ahead.

The input carry C(0) is fed into cells C[4,1] through C[4,4] which,
together with the cells in the second and third rows above them, func—
tion as the carry-look—ahead for carries C(l1) through C(4). Then the
output of cell C[4,4] (which is C(4)) is fed into cells C[4,5] through
C[4,10] that similarly produce the carries C(5) through C(10). Lastly,
the output of cell c[4,10] is fed into the cells to its left, so C(l1l)
through C(16) are produced.

Let us assume that each type of cell produces its outputs 1in the
same time delay d after its inputs are stable. For this particular adder
example it was also given that the sum S(I) has to be available 7d and
the input carry C(0) is available 3d after the inputs A(I) and B(I) are
stable. Also, the fanout is limited: each cell can drive at most 7

other cells. The structure shown in Figure 6 meets these constraints

COMPUTER-AIDED DESIGN SESSION

Algorithmie Layout of Gate Macros

1] 1 1 1 1 ﬂ 1 1 1 f_g 1 1 L II 1 _g
b 2h) 2b 2b
Al [l z6 7 | [z (||| 2b) 2b| | | 2b Za| |[[f2zb) |l zb
3 3 3 3 3 32 3 3 3 2 3 3 3 3 3 3
] I N |]
4 4 4 4 3 4 4 4 4 4 4 % A 4 4 4

——T 2 asam
T 1
Q‘ k /'J r ;
\ (F i ‘ |
type 1 cell type 2 cell
i i .

=
N
, .
=

b=

type 3 cell type 4 cell

Figure 6. 16-bit adder structure and types 1, 2, 3 and 4 cells, in AND-OR form.

CALTECH CONFERENCE ON VLSI, January 1981

43U
Daniel D. Gajski, Avinoam Bilgory and Joseph Luhukay

with a very lwportant feature - it has the minimum number of rows,
therefore it occupies minimum chip area (however, this structure is not

unique) .

Several paths through the structure have the maximum specified
delay. They will be called critical paths (e.g C[l1,6] » C[3,6] » C[3,8]
» C[3,10] > C[4,10] » C[4,12] » C[5,14]). The functions that define
each type of cell are evaluated by the Cell Generator in a sum of pro-
ducts form. Since in MOS technology (where this example is implemented)
an AND-OR-INVERT logic 1is implemented more naturally then AND-OR, the
complemented outputs are produced by each cell rather than the true
ones. Inverting the outputs again Is ruled out, since it almost doubles
the delay tlme of each cell. For type 1 and 4 cells the double inversion
problem 1is solved by modifying the functions to fit the complemented
outputs. However, for type 2 and 3 cells this solution does not work,
since these cells drive cells of the same type. Instead, two different
subtypes of type 2 cell are defined: type 2a, which produces comple-
mented outputs from [ts true inputs and type 2b, which produces true
outputs from its complemented inputs. Now, cells along the critical
paths are chosen to be of types 2a and 2b alternately. For type 3
cells, inverting the left output of C[4,4] and C[4,10] (that drive other
type 3 cells) is unavoidable. TInverters must also be added to few type
1 and 2 cells in order to adjust their outputs to the driven cells. For
these cells, only the outputs that drive the cells in the same column
are inverted again, while the outputs that drive cells to the left
remain wunchanged. Since critical paths have already been taken care of,
the adder speed does not degrade by these inverters. 1In Figure 6, cells

that contain additional inverters have a bar added above thelr type

number.

COMPUTER-AIDED DESIGN SESSION

Algorithmie Layout of Gate Macros

Conclusions

We have described the basic ideas behind a gate-to-silicon compiler
by walking through a simple and well-known example. The compiler con-
sists of Ffour modules, each of which performs one step of the transla-
tion toward silicon level. The first translation is a crude approxima-
tion of the final layout, and therefore one or more iterations are

needed to achieve a "near optimal” solution.

The novel approach in our compiler is based on (a) the set of syn-—
thesis procedures for decomposition of gate macros into small atomic
cells and for optimization of obtained cellular structures with respect
to environmental and technological parameters, and (b) the set of algo—
rithms for automatic layout of different cell models obtained through

decomposition of gate macros.

CALTECH CONFERENCE ON VLSI, January 1981

252
Daniel D. Gajski, Avinoam Bilgory and Joseph Luhukay

References

[BiGa80] Bilgory, A. and Gajski, D. D., "Automatic Cell Generation for
Recurrence Structures” University of Tllinois at Urbana-
Champaign, Department of Computer Science, Report UIUCDCS-R-
80-1040, November 1980.

[Joha79] Johannsen, D., "Bristle Blocks: A Silicon Compiler,” Proc.
16th Design Automation Conf., pp 310-313, 1979.

[MeCo80] Mead, C. A., Conway, L. A., Introduction to VLSI Systems,
Addison-Wesley, 1980.

[SOHT80] Shirakawa, I., Okuda, N., Harada, T., Tani, S. and Ozaki, H.,
"A Layout System for the Random Logic Portion of MOS LSI,"
Proc. 17th Design Automation Conf., pp 92-99, 1980.

[Verg80] Vergnieres, B., "Macro Generation Algorithms for LSI Custom
Chip Design,” IBM J. Res. Develop., Vol. 24, pp 612-621,
1980.

COMPUTER-AIDED DESIGN SESSION

