
* Algorithmic Layout of Gate Macros

Daniel D. Gajski

Avinoam Bilgory

Joseph Luhukay

Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

The rapid advancement of VLSI technology necessitates new implemen­

tation methodologies with design automation capabilities. Existlng

implementation styles such as master slice, programmable logic arrays

and custom design with cell library do not achieve the best tradeoffs

between clrcuit density and chip development cycle time. The implemen­

tation ~methodology based on register-transfer building blocks called

gate macros can be used to drastically c ut down the design time. Furth­

ermore, the gate macros which generally represent functional entities

like registers, adders, busses, logic units etc. are subjective to algo­

rithmic or totally automatic layout [Verg80], [Joha79] .

This paper describes the basic modules of a gate-to-silicon com­

piler which accepts as its input a high level description of gate macros

and generates a layout that satisfies particular technology (NMOS, for

example) and environmental parameters (layout area or time delay, for

example). The input to the gate-to-silicon compiler are the set of

* This work was supported in part by the NSr under g rant
No. US NSF MCS80-0156l

CALTECH CONFERENCE ON VLSI, JanuaPy 1981

238
Daniel D. Gajski , 4v i noam BilgoPy and Joseph Luhuka y

tnacros generated R.t the register transfer level. High-level language

constructs like DO loops and IF statements a re allowed in the input

language. However, only Boolean scalars, vectors and strings are

allowed. For example, a 16-bit binary adder can be described as fol­

lows:

31: C(O) = CIN

DO I = 1,16

S2: C(I) = A(I)*B(I) + (A(I) + B(I))*C(I-1)

S3: S(I) A(I) ffi B(I) ffi C(I-1)

END

S4: COUT = C(l6)

The above description can be used for variety of impleme ntation

styles. For example, tf the delay time specified is relatively slow

with respect to t echnology used the 32-bit adder will be implemented as

a ripple-carry adder. If a faster version is required the look-ahead­

carry adder will be used. For different delay times different number of

bits will be looked ahead . Similarly, different layouts will be produced

for different tlme delays.

The compiler consists basically of four modules (Figure 1):

1 . Boolean Analyzer partitions the input description into blocks

with easily recognizable structure. For example, the statements s
1

and

s
2

will be recognized as a recurrence system while the statement s
3

is

detected to be a vector operation. Statement s
4

is detected as a scalar

operation. Furthermore, the Boolean Analyzer generates the dependence

g raph with statements as vertices and dependences as edges . The depen­

dence graph represents the internal structure of the gate macro. It

rnMPII'T'Ti'P_JtTnr:>n nr:oc:orrn cr;occrr~n

AtgoPithmic Layout of Gate MacPos

High Level Languaee des c ription of gate macros

J
I Boolean Analyzer I

Cell Generato r

Dependence Graph Refiner
• 1 Subcell Generator 1

I Cell Binder

]
IPara•neters Evaluati.onj

Cell Layout

I Symbolic Placement I
~

!Layout Generator

Timing Evaluation!

(Struc ture Generator l

~

Figure l. Block diagram of a gate-to-silicon compiler .

indicates the critical time delay and cell structure of the future lay­

out alternatives.

2. Cell Generator modules consist of Dependence Graph Refiner,

Subcell Generator and Cell Binder.

The Dependence Graph Refiner tries to break each of the dependence

graph nodes into as many nodes as possible. The resulting dependence

239

CAL TECH CONFERENCE ON VLSI, Januapy 1981

240
Dani eZ D. Gajsk i ~ Av i n oam BiZ gory and Jos e ph Luhuka y

graph is mor~ detailed, which allows the Cell Binder more flexibility in

optlmization. Since statements s
1

and s4 are scalar operatlons without

operators their layout area and time delay are 0(~) where ~ is a small

value, so they are left untouched. Statement s
2

is a recurrence with

maximum O(n log n) layout area and minimum O(log n) time delay where n

is the recurrence length. Since the recurrence node will be broken into

three or more different types of subcells, its decomposition is left to

the Snbcell Generator. Statement s
3

has an O(n) layout area and 0(1)

time delay. Since the EXCLUSIVE-oR oper~tlon is associative, statement

s
3

can be dissolved into s
3

a and s
3

b. Using the above approximation the

original program is d lstributed as shown belo'"·

Sl: C(O) = CIN

DO I = 1,16

S2: C(I) = A(l)*B(I) + (A(I) + B(I))*C(I-1)

END

DO I 1,16

53a: T(I) = A(I) ID B(I)

END

DO I = 1,16

53b: S(I) -= T(I) EB C(I-1)

END

s4: GOUT "" C(l6)

The new dependence graph ls shown in Figure 2.

The Subcell Generator consists of several submodules, each for one

type of a block recognized by the Boolean Analyzer. Each submodule gen­

erates the functional description of the basic subcells used to syn­

thesize the given block. The recurrence statements s
1

and s
2

generate

COMPUTER-AIDED DESIGN SESSION

Algo ~ithmic Layout of Gate MacPos

Figurcl 2 . De pendence gra ph o f distribut~d progr~m.

f our types of subcells:

type 2.1 su bcel l: G A*B

type 2 . 2 subcell : p = A + 8

type 2.3 subcell: G = Gl + G2*P l, p ~ p *P
1 2

type 2.4 subcell: c G + P*Co

A description of cell generation f or recurrence structures is f ound in

[B iGa80]. Statements s3a and s3b gener~te one type of subce ll e a ch,

called type 3a and 3b subcells, r e spectively.

The Cell Binder combi~es subcells to form larger cells. The sub-

cells to be combined are selected according to the constra ints pos ed by

the dependence graph. Since type 2.1 and 2.2 subcells (genera ted fo r the

recurrence) pe r form vector operation as well a s type 3a s ubce ll, the

three can be combined t o form one cell called type 1 cell. Type 2.4 and

3b Bubcells can also be combined into one cell, but it was not done in

this e xample, so type 2.3, 2. 4 and 3b s ubcells will e ach be assigned one

CALTECH CO NFERENCE ON VLSI, Ja nua Py 1981

242
Daniel D. Gaj s ki , Avinoam Bilgo Py an d Jo s eph Luh ukay

t ype of cell and r e named as type 2, 3 and 4 cells, respectively. The

layout occupies minimum area when all the cell types have similar

widths. 5o, if the Structure Ge nerator finds, for example, type 1 cell

to be too l a rge , a separate cell type may be dedica ted t o subcell 3a.

Since s3 is not on a critical path, this ce ll can be positioned almost
. a

anywhere in the layout in that case.

3. Cel~ L~out modules consis t of Symbolic Placement and Layout

Generator.

The Symbolic Placement module ge ne rate s a two-dimensional array of

symbolic transis tors and their connections. Compaction is done automat­

i cally wht:!n this two-dimens tonal array is tra11s lated by the Layout Gen­

er a t or into a comple t e mask description in compliance with layout design

rules o f the chosen technology.

Each cell can be manually designed if so des ired, leaving the

p l.<icement a nd routing to be automatically performed by the system. The

11anual cell des lgn presents one ex:tre•ne of the provided layout design

space [MeCo80]. However, the ove rall aim is to have an automatic layout

system, where a manual cell design or a cell library .is r eplaced by the

library of algorl t h.ns in which one o r rnore algorithms for automatic gen­

e ratlon of layout s pecifications are available for each cell model sup­

plie d by the Ce ll Gene rator module. It then follows that the algo­

rithmi c l ayout ls t he othe r extre•ne of the layout design spectrum.

For example , an obvious approach would be to implement each c e ll
2 with a sma l l ;Jrog r'lonmable logic array . The MOS a nd I L technologies are

well a daptable t o a utoma tic synthesis as shown in [SOHT80] for one-

dime nsional sate a rrdys.

a pproach a s de s c ribed be low.

We have chosen a two-dimensional array

COMPUTER - AIDED DESIGN SESSIO N

ALgo~ithmic Layout of Gate Mac~os

The Symbolic Placement module is based upon a grid system of tracks

- or channels - on different layers of the integrated circuit structure.

Interaction among the layers ls governed by the technology, and as a

result, geometric relationship among the tracks is determined by the

technology's layout design rules. Figure 3 shows a grid system which is

used for silicon-gate MOS.

---1--~-------------

---1-- --r-----------
---- - metal

---- polysilicon

----- - -----------

Figure 3. Sample grid system for MOS technology.

Here the metal layer is more or less independent of the polysilicon and

the diffusion layers, whereas polysilicon and diffusion interact

strongly with each other. Hence polysilicon and diffusion tracks can be

"hidden" underneath metal tracks. Using this 3rid as a base, synthesis

procedures have been developed. For example, using a metal and polysili­

con grid like in Figure 3, two-dimensional arrays can be formed by mani­

pulating the diffusion to form the necessary devices, interconnected

such as to build the required circuit.

CALTECH CONFERENCE ON VLSI, JanuaPy 1981

244
Daniel D. Gajski ~ Avinoam Bilgo r y and Joseph Luhukay

Flgurc 4 shows the processes implemente d by the Cell Layout

modules. Input to the Symbolic Placement module consists of functional

description of a cell (or a set of cells), in the form of a set o f AND­

OR-INVERT Boolean equations. In addition to this, basic topological

information about the cell is also given, which comprises assignment of

topological attributes to the input-output nodes of the celL For exam-

ple, the cell shown in Figure S(b) was specified with G1 , -P1 and T

(ordere d from left to right) as t op-inputs coming in polysilicon, c
2

and

P2 (ordered f rom top to bottom) as right-inputs coming in metal, G, P

and T (ordered from left to right) as bottom-outputs going out in

polysilicon , and G and P (ordered from top to bottom) as left-outputs

going out ln metal. The functional description specified for the cell

is: G ~ Gl*Pl + Gl*G2; p a pl + p2 and T = T.

If the I/O nodes ordering along the cell boundaries is fixed, such

as in our case, then the Symbolic Placement module will start by order­

ing product-terms within an AND-oR-INVERT function, and also of the

drive-transistor~ within a product-term. Otherwise, the module will

first gene rate a symbolic placement of the functions themselves. The

ordering's goal is to minimize the cell's height by r e ducing the number

o f horizontal tracks needed to lay out the cell. In our example, we

neerl t o place the product-terms of function G (G
1
*i\ and G

1
*G

2
), func­

tion P (P1 and P2) and function T (T), such that G
1

, P
1

and T which

come in polysillcon- need not traverse any unnecessary vertical diffu­

sion trac ks . This is done by identifying the polysilic on input variable

shar~d by both f unct ions (here : i\) and ordering the product terms such

that metal crossovers for the polysilicon input variables (to get over

diffusion tracks) are minimized. The following table shows how this

process is done:

COMPUTER -A IDED DESIGN SESSION

245
AlgoPithmic Layout of Gate MacPoB

Transistor
sizes

Functlonal description
+

Basic topological description

No Gate

Yes

Product-term

Symbolic placement

Drive-transistor

Symbolic placement

Layout of;

- diffusion product-term tracks

- input nets & drive transistors

- load structures

- output nets

- inverter st ructures

mask description

Symbolic
Pl>tcement

Symbolic Placement

Layout Generator

Figure 4. Block diagram of the Cell Layout modules.

CALTECH CONFERENCE ON VLSI , JanuaPy 1981

246

Daniel D. GnjskiJ 4vinoam BilgoPy and Joseph Luhukay

-
G1 p1 T G1 p1 T

"· v. Gl*P1 1 l 0 G: c1 *G2 1 0 0

c1*c2 1 0 0 Gl*Pl 1 l 0

p: p1 0 l 0 P: pl 0 1 0
-
p2 0 0 0 p2 0 0 0

- - -T: T 0 0 l T: T 0 0 1

Before ordering After ordering

The output of the Symbolic Placement module is a tiible denoting

rel~tlve placement of transistors on the reference grid system, and

net-lists for the inputs and outputs. For our example, the table will

be as follows:

where columns denote vertical diffusion tracks, and rows denote horizon­

tAl polysilicon tracks.

The Layout Generator uses the symbolic placement data to generate

the masks, described in an intermediate form like the CIF [MeCo80]. It

generates the rectangles necessary to lay out the masks: diffusion

product-term "tracks", input nets and drive transi~tors, load struc­

tures, output nets, and inverter struct11res. Figure S shows the simu­

lated layout of four types of cells used in our example.

Rather than predefining device parameters and then laying them out

using a placement and routing scheme, the circuits are first laid out in

an drray-like structure with minimum device sizes. The electrical and

geometrical parameters are passed on to the next module. Iteration of

COMPUTER-AIDED DESIGN SESSION

247
Algo~ithmic Layout of Gate Mac~os

G

p

CO-

G = G1 + G2*P1 P = P1*P2

T = T

G = Gl*Pl + Gl*G2 ; p = PJ + p2

'1' = T

c

(a) (b)

G p T

~~ 0

~ru~
GND

0

M5"

~ co

I lo

ca1J
I

VDD .
0 ..

s

T 'r S = C*T + C*T

(c) (d)

Figure 5. Layout of adderr s bas ic cells :

(a) Type 2a cell; (b) Type 2b cell ;

(c) Type 3 cell; (d) Type 4 cell .

CALTECH CONFERENCE ON VLSI , Janua~y 1981

248
Da nieL D. Ga jsk i , Avinoam BitgoPy and J oseph Luhukay

the process ~ill produce the desired clrcuit with the device sizes

necessary to meet the design goals.

4. Structure ~ene~ator attempts to obtain the best possible struc­

tur~ for the given func tional descrlptlon and environmental parameters.

1t specifies the cell types, the position of each cell in the final lay­

out and the interconnections between the cells.

Figure 6 shows the structure •>f a 16-bit binary adder . Each cell

will be refered to as C[i,j], where land j are the row and column whe re

the cell is l ocated, respectively, and the top rightmost cell is C(l,l].

D<ita are flowing only from top to bottom and from right to left. The

four types of cells gener~ted by the Cell Generator are located as fol­

lows: type 1 cells in the first row, type 2 ln the second and third

rows, type 3 in the fourth row and type 4 in the fifth row . The second,

thlrd and fourth rows perform the carry-look-ahead.

The lnput carry C(O) is fed into cells ~[4,1] through C[4,4] which ,

together with the cells in the second and third rows above them, func­

tion as the carry-look-ahead for carries C(l) through C(4). Then the

output of cell C[4,4] (which is C(4)) is fed into cells C[4,5] through

C[4,10] that <>Lmilarly produce the carries C(S) through C(lO). Lastly,

the output of cell c[4,10] l.s fed into the cells to its left, so C(ll)

through C(l6) are produced.

~et us assume that each type of cell produces its outputs in the

sa•ne time delay d after l.ts inputs are stable. For this particular adder

example it was also given that the sum S(I) has to be available 7d and

the input carry C(O) is available 3d after the inputs A(I) and B(I) are

stable. ~lso, the fanout is limited: each cell can drive at most 7

other cells. The structure shown in Figure 6 meets these constraints

COMPUTER-A IDED DESIGN S ESSION

AlgoPithmia Layout of Gat e Maa~os

type 1 cell type 2 cell

--,-,-..,

I
I

!

~8 I
I

'{
type 3 cell type 4 cell

Figure 6. 16-bit adder structure and types l, 2, 3 and 4 cells, in AND-OR form.

CALTECH CONFERENCE ON VLSI, Janua~y 1981

Daniel D. Gajski, Avinoam BiZgory and Joseph Luhukay

with a very important feature - it has the minimum number of rows,

therefore it occupies minimum chip area (however, this structure is not

uni•111e).

Several paths through the structure have the maximum specified

delay. They will be called ct:'itical paths (e.g C[l,6] ~ C[3,6] + C[3,8]

+ C[3,10] + C[4,10] + C[4,12] + C[5,14]). The functions that define

each type of cell are evaluated by the Cell Generator in a sum of pro­

ducts form. Since in ~OS technology (where this example is implemented)

an AND-DR-INVERT logic is imple1nented more naturally then AND-oR, the

complemented outputs ;ue produced by each cell rather than the true

ones. Inverting the outputs again ls ruled out, since it almost doubles

the delay t Lme of each cell. For type 1 and 4 cells the double inversion

problem is solved by modifying the functions to fit the complemented

outputs . However, for type 2 and 3 cells this solution does not work,

since these cells drive cells of the same type. Instead, two different

subtypes of type 2 cell are defined: type 2a, which produces comple­

mented outputs from lts true inputs and type 2b, which produces true

outputs from its complemented inputs. Now, cells along the critical

paths are chosen to be of types 2a and 2b alternately. For type 3

cells, invertlng the left output of C[4,4] and C[4,10] (that drive other

type 3 cells) is unavoidable. Inverters must also be added to few type

1 and 2 cells in order to adjust their outputs to the driven cells. For

these cells, only the outputs that drive the cells in the same column

are inverted again, while the outputs that drive cells to the left

remain unchanged. Since critical paths have already been taken care of,

the adder speed does not degrade by these inverters. In Figure 6, cells

that contain additional inverters have a bar added above their type

number.

COMPUTER-AIDED DESIGN SESSION

.4Zgoroithmic Layout of Gate Macrooa

Conclusions

We have described the basic ideas behind a gate-to-silicon compiler

by walking through a simple and well-known example. The compiler con­

sists of four modules, each of which performs one step of the transla­

tion toward silicon level. The first translation is a crude approxima­

tion of the final layout, and therefore one or more iterations are

needed to achieve a "near optimal" solution.

The novel approach in our compiler is based on (a) the set of syn­

thesis procedures for decomposition of gate macros into small atomic

cells and for optimization of obtained cellular structures wlth respect

to environmental and technological parameters, and (b) the set of algo­

rithms for automatic layout of different cell models obtained through

decomposition of gate macros.

CALTECH CONFERENCE ON VLSI, Januaroy 1981

252

(BiGa80]

[Joha79]

(MeCo80]

(SOHT80]

[Verg80]

Daniel D. Cajski, Avinoam Bilgopy and Joseph Luhukay

References

Rilgory, A. and Gajski, D. 0., "Automatic Cell Generation for

Recurrence Structures" University of Illinois at Urbana­

Champaign, Department of Computer Science, Report UIUCDCS-R-

80-1040, November 1980.

Johannsen, D., "Bristle Blocks: A Silicon Compiler," Proc.

16th Design Automation Conf., pp 310-313, 1979.

Mead, c. A., Conway, L.A., Introduction to VLSI Systems,

Addison-Wesley, 1980.

Shirakawa, I., Okuda, N., Harada, T., Tani, s. and Ozaki, H. ,

"A Layout System for the Random Logic Portion of MOS LSI,"

Proc. 17th Design Automation Con£., pp 92-99, 1980 .

Vergnieres, B., "Macro Generation Algorithms for LSI Custom

Chip Design," IBM J. Res. Develop., Vol. 24, pp 612-621,

1980.

COMPUTER-AIDED DESIGN SESSION

