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Abstract 
  
This paper presents a calculation method for the 3-D unsteady cavitating hydrofoil problem. The method is based on 
a simple surface panel method “SQCM” which satisfies easily the Kutta condition even in the unsteady problem. 
This method is applied to the Wagner problem, heaving hydrofoil and the hydrofoil in sinusoidal gust. We show 
some calculated results for partially cavitating and supercavitating hydrofoil and compare them with other calculated 
results. 
  
1  Introduction 
  
In the fluid machinery such as marine propeller operating at high speed, we can not prevent the occurrence of 
cavitation. Cavity on the propeller blade produces the pressure fluctuation on the stern hull surface which is one of 
the causes of the ship vibration and also reduces the propeller performance. Therefore it is important to predict the 
unsteady cavity pattern and volume etc. accurately, because the unsteadiness of the cavity affects the pressure 
fluctuation on the stern hull surface. In this paper we treat the unsteady sheet cavitation. 
 Panel methods, which can represent the blade shape accurately, are recently widely used for the cavitation 
prediction. The calculated results of unsteady cavitation have been presented by Kim and Lee (1993) and Ando et al. 
(2000) for 2-D problems, Kinnas and Fine (1992) and Kim et al. (1994) for 3-D problems. 
 Recently we developed a simple surface panel method “SQCM” which satisfies easily the Kutta condition even 
in the unsteady problem. In this paper we extend SQCM to the 3-D unsteady sheet cavitating hydrofoil problem and 
present the calculation method to treat the partially cavitating and supercavitating cases by using the same numerical 
procedutre. 
  
2  Calculation method 
  
2.1 Outline of unsteady SQCM 
  
SQCM (Source and QCM) is a simple surface panel method 
which is a kind of singularity method. This method uses source 
distributions (Hess and Smith, 1964) on the hydrofoil surface 
and discrete vortex distributions arranged on the mean camber 
surface according to QCM (Quasi-Continuous vortex lattice 
Method) (Lan, 1974). These singularities should satisfy the boundary condition that the normal velocity is zero on 
the hydrofoil and the mean camber surfaces. 

Let us consider a hydrofoil of chord length c  advancing with a constant speed U  and doing slow oscillation 
(see Figure 1). The hydrofoil coordinate system xyzo −  and the space coordinate system XYZO −  are 
introduced as Figure 1. The angle α  between the x -axis and the X -axis is defined as the angle of attack of the 
hydrofoil. 

The hydrofoil surface S  is divided into M  panels in the spanwise direction. The face and back sides of the 
hydrofoil section are divided into mN  panels in the chordwise direction, respectively. Therefore the total number 

Figure 1: Coordinate systems 
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of source panels for the hydrofoil surface becomes mNM 2×  and constant source m  in each panel is 
distributed. 
 Next the mean camber surface is divided into M  segments in the spanwise direction )(µ  corresponding to 
the division of the source panels and divided into γN  in the chordwise direction. The positions of the bound 
vortex LP

µνξ  and control point CP
µνξ  on the mean camber surface are expressed by the following equations 

according to the QCM theory. 
  

{ }[ ] { } 2122121 /)/cos(,/)(/)(cos γµµνγµµν νπ−=ξπ−ν−=ξ NcNc CPLP  (1) 
  

Here µc  is the chord length of the µ -th hydrofoil section, and µc is the averaged chord length between the µ -th 
and 1+µ -th hydrofoil sections. 
 And total M × γN  ring vortices are located on the mean camber surface according to Eq. (1). One set of ring 
vortices consists of one bound vortex, two free vortices and the first spanwise shed vortex closest to the trailing 
edge(T.E.) in the trailing wake. In case of the unsteady problem the shed vortex flows out from T.E.. Thus the ring 
vortex which represents the shed vortex is located in the trailing wake. This ring vortex consists of two spanwise 
shed vortices and two chordwise trailing vortices. Then the shed vortices are assumed to shift on the x -axis by 
velocity U  retaining each strength during one time step. 
 Summing up the inflow velocity vector IV

r
, the velocity vector due to the source panels mV

r
 and the velocity 

vector due to the vortices γV
r

, the velocity vector around the hydrofoil in the hydrofoil fixed coordinate V
r

 is 
expressed as 

mI VVVV
rrrr

++= γ  (2) 
  

The detailed expressions mV
r

 and γV
r

 are described in the reference (Ando et al., 1998). 
 We consider that the velocity normal to the mean camber surface at T.E. NV  is zero as the Kutta condition in 
the steady SQCM. On the other hand we introduce the normal velocity at T.E. in order to make the pressure 
difference between the upper and lower surfaces zero in the unsteady case. We choose the control points on the 
upper and the lower source panels at T.E. as the positions where the Kutta condition is satisfied. Here we define the 
pressure difference as p∆  and indicate the upper and the lower surfaces with subscripts −+ and , respectively. 
Defining the perturbation potential and the magnitude of velocity on the upper and lower surfaces as +φ , −φ  and 

+V , −V , respectively, the Kutta condition in the unsteady SQCM is given by 
  

0
2
1 22 =−ρ+φ−φ

∂
∂

ρ=∆ −+−+ )()( VV
t

p  (3) 

  
 The boundary conditions at the control points on the hydrofoil and the mean camber surfaces are that there is no 
flow across the surfaces. But there exists at T.E. the normal velocity which is introduced to satisfy the Kutta 
condition as expressed by Eq. (3). Therefore the equations of the boundary conditions are given as follows: 
  







=⋅
=⋅

T.E.at
T.E.)(exceptsurfacecamberandhydrofoilon0

NVnV

nV
rr
rr

 (4) 

  
where n

r
 is the normal vector on the hydrofoil and the mean camber surfaces. 

 The unknown values are the source strengths on the hydrofoil surface, the vortex strengths on the mean camber 
surface and the normal velocity NV  at T.E.. NV  is expressed by the following equation and determine so as to 
satisfy the Kutta condition iteratively. 
  

)()()( )/( n
N

nn
N VUpV +ρ∆=+1  (5) 

  
Here n  is the number of iteration. The first term in the right hand side in Eq. (5) means the corrector for the value 
of the previous step )(n

NV  which is proportional to the pressure difference )(np∆ . The iteration is continued until 
the pressure difference becomes small ))/(( 32 102 −≤ρ∆=∆ UpCP . Assuming the normal velocity NV  at T.E. 
at each iterative step, Eq. (4) can be solved as the linear simultaneous equations for singularity distributions. 
 The unsteady pressure distribution on the hydrofoil is calculated by the unsteady Bernoulli equation expressed as 
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where 
0p = the static pressure in the undisturbed inflow, ρ = the density of the fluid 

φ  = the perturbation potential in the hydrofoil coordinate system 
Here the time derivative term of φ  in Eq. (6) is obtained numerically by two points upstream difference with 
respect to time. Before numerical differentiation the perturbation potential φ  is calculated analytically for source 
and vortex components, respectively. Then the pressure coefficient is defined by 
  

)/()( 2
2
1

0 UppCp ρ−=  (7) 
  

 The lift L  and the drag D  of the hydrofoil are defined by the forces in the Z  direction and the X  
direction in the space coordinate system, respectively. The lift and drag coefficients are defined by 
  

)/(),/( 2
2
12

2
1 AUDCAULC DL ρ=ρ=  (8) 

  
where A  is projected area of the hydrofoil on the −xy plane. 
 After above calculation, the trailing vortices are shifted backward and the time step Lt  is changed into 1+Lt . 
  
2.2  Calculation method for unsteady cavitation 
  
Denoting the cavitation number and the tangential velocity on the 
cavity surface cS  by σ  and TV , respectively, we have the 
following relation in the unsteady problem. 
  

( ) tUVT ∂φ∂−σ+= /21 2  (9) 
  

In the present calculation method we assume first the cavity 
length µl  for each spanwise section. Next we give the 
cavitation number σ  in Eq. (9) and obtain the tangential 
velocity TV , and then determine the source and vortex distributions from the following equation. 
  

{ })(/)( µµν−µνµν −=∆Φ−Φ fT sfVs 11  (10) 
  

Here µνΦ  and 1−µνΦ  are the total velocity potential on the control points of the ν -th and 1−ν -th cavity 
surface panels in the chordwise direction, respectively. µν∆s  means the distance between these two control points 
(See Figure 2). In eq. (10), we adopt the cavity termination model used by Kinnas and Fine (1993), that is, 
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where µfs  represents the distance from the cavity detachment point along the hydrofoil surface and 
TA )( 10 << TA  and )( 0>νν TT  are proper constants. Eq. (11) means that the tangential velocity changes 

gradually according to the shape of function )( µ− fsf1  in the transition region between the cavity end point µLs  
and the point µTs  in front of the point µLs  and becomes non-zero value )( TT AV −1  at µLs . The length of 
the transition region is expressed as µλl . Here λ  is also a proper constant. In the present calculation we adopt 

20.=TA , 01.=νT , 10.=λ . 
 On the other hand the boundary conditions on the hydrofoil surface S  except the cavity surface and on the 
mean camber surface C  are that there is no flow across the surfaces. These boundary conditions are the same as 
those of SQCM expressed by Eq. (4). Form Eqs. (4) and (10), we can derive MNNm ×+ γ)(2  linear 
simultaneous equations which determine m , γ . When we calculate the velocity on the cavity surface using these 
singularity distributions, we can not satisfy the boundary condition on the cavity surface. Therefore we need 

µDl

µl
µλl

µfs
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Cavity Surface

Figure 2: Partially cavitating hydrofoil 
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rearrange the source panels on the cavity surface so as to coincide with the flow direction calculated by these 
singularity distributions. 
 Defining the cavity height of the ν -th panel at the present time Lt  as )( Lthµν , )( Lthµν  is expressed by the 
following equation. 
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We repeat two steps, that is, solving Eqs. (4) and (10) and rearranging the source panels on the cavity surface until 
the cavity shape converges. 
 After rearranging the source panels, we adjust the cavity length by using the following equation so that the height 
of opening )( Ltµδ  at the cavity end is close to the target opening µδE . 
  

)()()( )()(
LL

n
L

n twtt µµ
+

µ δ+= ll 1  (13) 
  

Here n  and w  are the iteration number for adjusting the cavity length and a proper weight coefficient, 
respectively. Modifying the opening at the cavity end proposed by Ito (1986), we adopt the following equation for 

µδE . 
)(. LE tµµ α=δ l280  (14) 

  
We repeat the calculation described above until the following condition is satisfied. 
  

310−
µµµ ×≤δ−δ ct EL)(  (15) 

  
When the calculated opening at the cavity end )( Ltµδ  satisfies Eq. (15), we move to the next time 1+Lt . 
 If the cavity length )( Ltµl  is in the following range, we enforce that )( Ltµl  equals to maxl . 
  

).()().( maxmin µµµ =≤≤= ctc L 051990 lll  (16) 
  

This is because it is difficult to converge the cavity shape when the cavity length nearly equals to the chord length. 
The calculation method in the supercavitating case is basically the same as that in the partially cavitating case. 
However we only use Eq. (4) as the boundary condition for the spanwise section which contains both the partially 
cavitating and supercavitating cases. At that section the cavity shape is determined by interpolation using the cavity 
shapes at the neighboring sections. We adopt the following equation for the opening at the cavity end for all cavity 
length in the supercavitating case. 
  

280 α=δ µ .E  (17) 

  
3  Calculated results 
  
In the present calculation, we take 640 panels ( 16402 == NNm , ) on the hydrofoil surface and do 336 bound 
vortices ( 1621 ==γ NN , ) on the mean camber surface. We assume that the location of the cavity detachment 
point is 0.6% chord length form the leading edge. 

As the first example, we calculate about the rectangular hydrofoil of aspect ratio, AR=2.778, advancing with 
constant speed U  abruptly from rest state at o6=α  (Wagner problem). The hydrofoil has NACA16-206 section 
at all spanwise positions and we take the time increment Ucdt /.10= . 

Figure 3 shows the cavity planform variation comparing with the experimental data (Ukon, 1986) and the 
calculated result (Ando et al., 1999) in the steady condition. We can see that the cavity grows with time and finally 
approaches both the experimental and calculated results in the steady condition. 
Next we show the calculated results for the rectangular hydrofoil of aspect ratio, AR=5.0, in heaving motion of the 
vertical displacement tiehh ω= 0 , where ).( ch 0100 =  is the amplitude of heaving and ω  is the circular 
frequency. The hydrofoil has NACA0006 section at the midspan, tapering elliptically to zero at the tip of the 
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hydrofoil, and is set at o5=α . Defining the reduce frequency, 502 ./ =ω= Uck , and cavitation number, 
20.=σ , we compare our calculated results with Kim et al.’s ones (1994). In this calculation, we take the time 

increment kUcdt 10/π= . In order to reduce the computing time we start the calculation of Wagner problem to 
approach the steady condition. Then we begin the unsteady calculation. 

 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
Figure 4 shows the cavity planform variation in one cycle. Both the cavity length and the width of variation in 

the present method are smaller than Kim et al.’s ones. These discrepancies may be caused by the difference of the 
treatment of the tangential velocity on the cavity surface and the cavity detachment point. 
 Figure 5 and 6 shows the lift and drag coefficient variations with respect to time. Discrepancies between the 
present results and Kim et al.’s results are observed because Kim et al. did not considered the unsteady pressure term, 

t∂φ∂ρ− / , in the pressure calculation for the first two cycles. After the third cycle both calculated results agree with 
each other. 

Next we show the calculated results for the rectangular hydrofoil of aspect ratio, AR=2.778, advancing in the 
sinusoidal gust whose vertical speed ),( txv  is )/( Uxtiev −ν0 , where λπ=ν /U2 , λ  is the wave length of the 
gust and ).( Uv 0200 =  is the gust amplitude. In this case, the reduced frequency k  is given by λπ /c . The 
hydrofoil has NACA16-206 at all spanwise sections and is set at o6=α . 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

  
  
  
  
  

Figure 3: Cavity planform variation versus time 
on Wagner problem (Rectangular hydrofoil, 
NACA16-206, AR=2.778, o6=α , 6280.=σ , 

Ucdt /.10= ) 

Figure 4: Cavity planform variation versus time in 
heave (Rectangular hydrofoil, NACA0006, 
AR=5.0, o5=α , 21.=σ , ch 0100 .= , 

50.=k , kUcdt 10/π= ) 
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Figure 5: Lift coefficient variation versus time in 
heave (Rectangular hydrofoil, NACA0006, 
AR=5.0, o5=α , 21.=σ , ch 0100 .= , 

50.=k , kUcdt 10/π= ) 

Figure 6: Drag coefficient variation versus time in 
heave (Rectangular hydrofoil, NACA 0006, 
AR=5.0, o5=α , 21.=σ , ch 0100 .= , 

50.=k , kUcdt 10/π= ) 
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 Figure 7 shows the cavity planform variation in one cycle for the conditions of 6280.=σ , 50.=k , 
kUcdt 20/π= . We can see that the cavity planform varies smoothly in wide range. 

 Figure 8 shows the variations of cavity length, c/l , and cavity volume, 3c/Vol. , at midspan and Figure 9 
does the lift and drag coefficient variations with respect to time. The variations of the vertical component of inflow 
at the leading edge of the hydrofoil are also shown in these figures. The phases of these results lag behind the 
heaving motion. 

Figure 10 shows the cavity shape variation and Figure 11 does the pressure distribution variation at midspan 
with respect to time. The pressure coefficient, )( σ−=pC , at the back side becomes constant corresponding to the 
target cavitation number. 
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Figure 7: Cavity planform variation versus time in
sinusoidal gust (Rectangular hydrofoil, NACA16- 
206, AR=2.778, o6=α , 6280.=σ , Uv 0200 .= , 

50.=k , kUcdt 20/π= ) 
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Figure 8: Cavity length variation at midspan and 
cavity volume variation versus time in sinusoidal 
gust (Rectangular hydrofoil, NACA16-206, AR= 
2.778, o6=α , 6280.=σ , Uv 0200 .= , 50.=k , 

kUcdt 20/π= ) 
0 0.5 1

0

0.05

0.1

Chordwise Position, x/c

z/
c

 t/T=0.1
 t/T=0.2
 t/T=0.3
 t/T=0.4
 t/T=0.5

 t/T=0.6
 t/T=0.7
 t/T=0.8
 t/T=0.9
 t/T=1.0
 
 
 
 

Figure 9: Lift and drag coefficients versus time in
sinusoidal gust (Rectangular, hydrofoil, NACA16- 
206, AR=2.778, o6=α , 6280.=σ , Uv 0200 .= , 

50.=k , kUcdt 20/π= ) 
Figure 10: Cavity shape variation at midspan 
versus time in sinusoidal gust (Rectangular hydro- 
foil, NACA16-206, AR=2.778, o6=α , 6280.=σ , 

Uv 0200 .= , 50.=k , kUcdt 20/π= ) 
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 Finally we show the results at 20.=σ  for the just above-mentioned hydrofoil in the same sinusoidal gust. Here 
we take the time increment kUcdt 10/π= . Both of the partially cavitating and supercavitating cases exist in this 
calculation. 
 Figure 12 shows the cavity planform variation in one cycle. The cavity planform varies continuously holding 
partially cavitating region near the tip of the hydrofoil and supercavitating region around midspan. 
 Figure 13 shows the variations of cavity length and cavity volume at midspan and Figure 14 does the lift and 
drag coefficient variations with respect to time. These results, especially the lift and drag coefficients, do not vary 
smoothly. The unstable partially cavitating region near the tip of the hydrofoil may cause these inaccurate results. 

Figure 15 shows the cavity shape variation and Figure 16 does the pressure distribution variation at midspan with 
respect to time. The pressure coefficient at the back side becomes almost constant in the supercavitating case too. 
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16-206,AR=2.778, o6=α , 20.=σ , Uv 0200 .= , 
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0 10 201

1.2

1.4

1.6

1.8

0

0.1

0.2

0.3

0.4

0.5

Ut

C
av

ity
 L

en
gt

h,
 l/

c

normal velocity, v

C
av

ity
 V

ol
um

e,
 V

ol
./c

3

l/c Vol./c3

Figure 13: Cavity length variation at midspan and 
cavity volume variation versus time in sinusoidal 
gust (Rectangular hydrofoil, NACA16-206, 
AR=2.778, o6=α , 20.=σ , Uv 0200 .= , 50.=k , 

kUcdt 10/π= ) 
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Figure 14: Lift and drag coefficients versus time 
in sinusoidal gust (Rectangular hydrofoil, NACA 
16-206, AR=2.778, o6=α , 20.=σ , Uv 0200 .= , 

50.=k , kUcdt 10/π= ) 
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4  Conclusions 
  
In this paper we presented a calculation method for the 3-D unsteady sheet cavitating hydrofoil problem by applying 
a simple surface panel method “SQCM”. We treated the partially cavitating hydrofoil in heaving motion and both 
partially cavitating and supercavitating hydrofoil in sinusoidal gust. Calculated results are compared with other 
calculated results and the accuracy of the present results is confirmed. The present method will be extended to the 
unsteady cavitating propeller problem. 
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Figure 15: Cavity shape variation at midspan versus 
versus time in sinusoidal gust(Rectangular hyrofoil, 
NACA16-206, AR=2.778, o6=α , 20.=σ ,  

Uv 0200 .= , 50.=k , kUcdt 10/π= ) 
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Figure 16: Pressure distribution variation at midspan 
versus time in sinusoidal gust (Rectangular hydrofoil, 
NACA16-206, AR=2.778, o6=α , 20.=σ , 

Uv 0200 .= , 50.=k , kUcdt 10/π= ) 
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