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Abstract

The present paper focuses on the correlation of cavitation instabilities in turbomachinery with steady cavity
length, or a parameter g /2a. A linear stability analysis shows that various types of cavitation instabilities start to
occur when the steady cavity length becomes larger than 65% of the blade spacing. Experimental evidence for this
will be reviewed. If we apply this rule in a cross flow plane, the effects of leading edge sweep to suppress
cavitation instabilities can be reasonably explained by using a corrected parameter in cross flow. This will also be
addressed.

1. INTRODUCTION

Cavitation instabilities are one of the major concerns for high-speed turbomachinery, such as turbopumps for
rocket engines. Following the observation of oscillating cavitation by Acosta (1958), extensive studies have been
made mainly from the viewpoint of system instability.

For the system instability, cavities are generally modeled using the factors called cavitation compliance and mass
flow gain factor. Various attempts have been made to evauate those parameters, mainly at Caltech, including
Brennen and Acosta (1973), Kim and Acosta (1975), Brennen and Acosta (1976), Brennen (1978), Acosta and
Furuya (1979), Brennen et a. (1982). In an attempt to evaluate those parameters based on an unsteady linear
cavitating flow analysis, Otsuka et al. (1996) found numerically that those parameters are functions of o /2a,
where o is the cavitation number and o is the incidence angle, although the proof for this was made later by
Watanabe et al. (1998). As shown by Acosta (1955), the cavity length on a hydrofoil depends on o/2a.
Therefore, the unsteady cavitation characteristics can be represented as functions of steady cavity length.  Although
rotating cavitation can be predicted by modeling cavitation by those parameters (Tsujimoto et a., 1993), more
detailed cavitating flow analyses are needed for the understanding of local instabilities such as rotating cavitation.

A linear stability analysis of cavitating flow around hydrofoils and cascades was carried out by Watanabe et al.
(1998), based on an unsteady linear closed cavity model. This analysis shows that the frequency and amplifying
rate of cavitation instabilities depend on o /2a, or the steady cavity length. Although the model assuming an
infinitesimal disturbance failed to predict cavitation instabilities for an isolated foil, a time marching calculation
allowing finite amplitude of oscillation (yet assuming linear closed cavities) favorably simulated the cavitation
instabilities for isolated foil (Watanabe et al., 2000). On the other hand, Horiguchi et a. (2000A) have shown that
various types of cavitation instabilities start to occur when the steady cavity extends over 65% of blade spacing.
Those instabilities can be physically explained by the interaction of the local flow near the cavity closure with the
leading edge of opposing blade. If we apply this rule in a cross flow plane, the effects of leading edge sweep to
suppress cavitation ingtabilities can be reasonably explained by using a corrected parameter in cross flow (Acosta et
al., 2000).

Motivated by Acosta's correlation of steady cavity length with o /2a, attempts to correlate cavitation
instabilities with this parameters are carried out by Pham, Larrarte and Fruman (1998) and Arndt, et a. (1998) for
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isolated hydrofoils. Clear correlation of this parameter with Strouhal number is shown in Arndt, et al. (2000) and
Kjeldsen, et a. (2000). Research on isolated hydrofoils will be reviewed by Jean-Pierre Franc in the present
Symposium and it will not be detailed here.

Although the correlation of cavity instabilities with ¢ /2a is derived from linear analysis, it applies reasonably
to many practical cases. The present paper focuses on such correl ations observed in turbomachinery.

2. ANALYTICAL METHOD
2.1 Formulation

We consider a cascade as shown in Fig.1. For simplicity, we assume that downstream conduit length is infinite and
no velocity fluctuation occurs there.  The upstream conduit length is assumed to be finite, L, in x -direction and the
conduit is connected to a space with constant (static = total) pressure at the inlet AB. This is intended to determine
if the predicted instability is system dependent or not. Since we consider a rotor, we assume that the velocity
fluctuation at the inlet AB is normal to the cascade axis. For a stator it is only necessary to assume that the velocity
fluctuation is in the direction of the free stream.

We assume small disturbances with time dependence el“where w= Gk *+j @ is the complex frequency with
wg the frequency and w;, the damping rate, to be determined from the analysis. The velocity disturbance is
represented by a source distribution g(s;) on the cavity region, vortex distributions y;(s;) and y,(S,) on the blades,
and the free vortex distribution y, (&) downstream of blades, shed from the blades associated with the blade
circulation fluctuation. We define the strength of these singularities using a coordinate fixed to the cavity to take
account of cavity length fluctuation. If we divide the strength of those singularities and the cavity length into
steady and unsteady components, we can represent the velocity with steady uniform velocity (U,Ua), the steady
disturbance (ug, V), and the unsteady disturbance (G, V):

u=U +ug +0e!

.~ 1)

v=Ua +v, +Ve!“

Weassumethat a <<1, |0],|V| <<|ug,|v{ <<U and neglect higher order small terms.

2.2 Boundary conditions and stability analysis
Theboundary conditions are
1. Thepressure on the cavity should equal vapor pressure.
2. Thenormal velocity on the wetted blade surface should vanish.
3. Thecavity should close at (moving) cavity trailing edge.
4, The pressure difference across the blades should vanish at the blade trailing edge (Unsteady Kutta's
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condition).

5. Upstream and downstream conditions. Since the downstream flow rate fluctuation is suppressed owing to
the infinite conduit length, the cavity volume fluctuation is related to the upstream fluctuation. The
direction of the velocity fluctuation at theinlet AB is assumed as mentioned before.

By specifying the strength of the singularity distributions at discrete points (S;) on the coordinates fixed to the

fluctuating cavity as unknowns, we can represent the boundary conditions as follows.
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where Ag(lg) and A, (ls,w) are coefficient matrices, B is a constant vector. The steady flow can be determined
from Eq. (2), which shows that the steady cavity length |s isafunction of o/2a. Equation (3) is aset of linear
homogeneous equations. For the cases with externally forced disturbances such as inlet pressure or flow rate

fluctuations, we would have a non-zero vector on the right hand side representing the forced disturbances. For the
present cases without any external disturbances, the determinant of the coefficient matrix [Au(ls,w)] should equal

zero

|Au(ls@)|=0 4
so that we have non-trivial solutions. The complex frequency w= wk +j ¢« is determined from this relation.
This equation shows that the frequency wg and the damping rate w, as well as possible mode of instability depend
only on the steady cavity length |, , or equivalently on o/2a, once the geometry and other flow conditions are
given.

3. EXAMPLESOF THE CORRELATION OF o/2a WITH INSTABILITIES
Before going into a detailed examination, several examples of the correlation are presented. Figure 2 shows a
map of various oscillating cavitation types observed in a three bladed inducer (Tsujimoto et al., 1997) represented on
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a suction performance plot. The lines with constant g /2a are drawn in the figure. It can be found that the
boundaries between the cavitation types are nearly parallel to the constant o /2a curves.

The next example is a surge instability of a marine propeller tested in a cavitation tunnel (Duttweiler and
Brennen, 2000). Figure 3 shows the occurrence of the instability in a cavitation number and advance ratio map.
Since the angle of attack in the vicinity of a propeller blade tip is approximately proportional to the difference,
Jo—J , between the design advance ratio J,, and the operating advance ratio J, a particular value of the parameter
£=(Jy-J)/o corresponds to a particular value of o /2a. Several lines of constant ¢ are plotted in Fig.3
where it is clear that the transition between stable and unstable behavior corresponds quite closely to the particular
value of £=2.0. Thus the instability boundary corresponds to a particular configuration of steady cavity length
on the propeller blade.

The third example is the rotating cavitation in a centrifugal impeller of low specific speed (Friedriches and
Kosyna, 2001). Figure 4 shows the suction performance curve in which the occurrence of rotating cavitation is
also shown. The onset conditions of the rotating cavitation at various flow rates are correlated with g /2a in Table
1. This clearly showsthat the rotating cavitation startsto occur at 0/ 2a = 2.34.
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The above examples show that ¢ /2a, or the steady cavity length, controls the onset of cavitation instabilities in
various types of machines.

4. ALTERNATE BLADE CAVITATION AND RESULTSOF STABILITY ANALYSIS

It is well known that alternate blade cavitation, in which the cavity length differs alternately, may occur for
inducers with an even number of blades. It was found possible to simulate aternate blade cavitation by simply
allowing the cavity length to be different on each blade (Horiguchi et a., 2000A). The steady cavity length
obtained by assuming equal cavities is plotted in the upper part of Fig.5 (a). The cavity lengths of aternate blade
cavitation thus obtained are shown in the upper part of Fig.5 (b), for a cascade with the stagger =80 degand the
chord-pitch ratio C/h=2.0, typical for pump inducers (Horiguchi et a., 2000B). In this calculation, a periodicity
over 4 blades is assumed and hence it corresponds to the case of 4-bladed inducer . The alternate blade cavitation
starts to devel op when the cavity length, |, of equal cavitation exceeds 65% of the blade spacing, h.

The flow field around alternate blade cavitation is shown in Fig.6, with those around shorter equal length cavities.
We should note that there exists a region near the trailing edge of cavities in which the flow is inclined towards the
suction surface of the blades and the incidence angle to the neighboring blade is smaller. This region starts to
interact with the leading edge of the neighboring blade when the cavity length exceeds 65% of the blade spacing.
If the cavity on one blade becomes longer than 65% of the blade spacing for some reason, the incidence angle to the
neighboring blade will decrease and hence the cavity length on the neighboring blade will also decrease. Then the
incidence angle to the original blade will increase and the length of the cavity on it will increase further. Thisis the
mechanism of the devel opment of alternate blade cavitation.

The Strouhal numbers & = wgl /2 ) of various amplifying modes are shown in the lower part of Fig.5 (a) and
(b) for equal length cavitation and aternate blade cavitation. The symbol 8, ., shows the phase advance of the
disturbance on the upper blade (n+1) with respect to that on the lower blade (n) by one pitch, which is determined
from the stability analysis. It is interesting to note that the Strouhal number based on the steady cavity length is
kept nearly constant against o /2a for all modes. Here we focus on Mode |.  For Mode I, the frequency is zero
and the phase difference 6, ,.; is 180 deg, corresponding to exponential transitions between equal and aternate
blade cavitation. This mode appears for equal cavitation longer than 65% of the blade spacing, h, which shows
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(lower figures) of various unstable modes, for 4-bladed inducer with
C/h=2.0, B =80 deg and L./C=1000, from Horiguchi et al., 2000B
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that the longer equal cavitation is statically unstable to a disturbance corresponding to the transition to aternate
blade cavitation. The aternate blade cavitation does not have this mode and hence it is statically stable. The
above discussion applies only for the cases with even number of blades. With odd number of blades, we do not
have a solution corresponding to aternate blade cavitation. The equa length cavity is statically stable for al
vauesof o/2a.

Various unstable modes start to occur for cavities longer than 65% of the blade spacing for which alternate blade
cavitation will develop. This suggests that the mechanism described above for alternate blade cavitation can be the
reason also for other instabilities. Those instabilities are discussed later after examining the “65% spacing” rule.
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5. SWEEP EFFECTSAND EXAMINATION OF 65% SPACING RULE
It is well known that leading edge sweep has a favorable effect on the cavitation of turbomachines. However,
the mechanisms of the improvement have not been made clear. A cavitation correlation obtained by considering
the velocity component in a plane normal to the leading edge is discussed here (Acosta et d., 2000). Figure 7
shows the cascade with the sweep angle A measured from the inducer axis. Velocity triangles in various planes
are shown in the figure. Here, we attempt to correlate the flow in the “Plan view” with that in the “Cross flow
plane” which is normal to the leading edge. We assume that the flow in the cross flow plane is independent of the
location of the cross flow plane considered. First, from geometrical relations, we obtain the following incidence
angle a. inthecrossflow plane.
a, =tan"}(tana /siM ) =a /simk (5)
Second, from the Bernoulli’s equation in the “Plan view” we can determine the cavitation number o in the cross
flow plane asfollows:
0. =0l(cos’ a sin®A +sin“a) =o /sin?A (6)
The last expressions of Eq. (5) and (6) are obtained for the cases of small a, and og=(p; - pv)/(p\/12/2) and
0. = (P — By) /(PVi® 1 2) are cavitation numbersin the“Planview” and “Crossflow plane’ respectively.
Combining Eq. (5) with Eq. (6) we obtain
o./2a.=(o/2a)/sinA 7
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This shows that the value of o /2a in the cross flow plane is increased by a factor of (1/sinA). This scaling
rule has been successfully applied to the lift and drag coefficients of cavitating single foil by Ihara et a., (1989).
Here we examine this rule for the cavitation development in areal inducer. Strictly speaking, the geometry of the
cascade in the cross flow plane depends on the sweep angle.  This effect is totally neglected here.

The geometry of the inducers tested is shown in Fig.8. They have helica blades with the same camber line
and a straight part near the leading edge. So, they have the same inlet and outlet blade angles and the non-
cavitating performance is nearly the same for all of the inducers. The cavity lengths for those inducers are plotted
against cavitation number o in Fig. 9 for various flow coefficients. It is evident that the cavity development is
delayed significantly for the forward (F30) and backward (B50) swept inducers as compared with the unswept (0)
inducer. For dl cases, the alternate blade cavitation starts to occur when the cavity length | becomes about 65%
of the blade spacing h, as predicted by the analysis. Then the same data is replotted against o/2a in Fig. 10.
The cavity development becomes nearly the same for different flow coefficients but we still have the difference
among inducers with different sweep. Figure 11 shows the plot against o./2a.. Here, the cavity development

is nearly the samefor al theinducers.
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Among these inducers, we did observe differences in the secondary flow and backflow but the differences were
not so large as expected. Figure 11 may suggest that the suction performance improvement by the leading edge
sweep is mainly caused by the cross flow effect and it can be represented by asimple parameter o /2a..

For al cases, unsteady cavitation starts to occur when the shorter cavity first shortens and then increases to 65%
of the blade spacing. This cannot be explained by the stability analysis but it suggests that the value of o./2a,
controls not only steady cavity length but also cavitation instabilities.
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6. VARIOUSMODES OF OSCILLATING CAVITATION

We now return to Fig. 5 (). Mode Il is a surge mode oscillation without interblade phase difference: 8, ,,,; = 0.
It was found that the frequency of this mode correlates with 1/+/L where L is the length of the upstream conduiit.
So this mode represents conventional cavitation surge.  Only Mode 1l is system dependent and all other modes are
system independent. Mode IX is aso a surge mode oscillation with no interblade phase difference but it has higher
frequency. This mode is herein called “higher order surge mode oscillation”. The cavity volume fluctuation is
much smaller than that of conventional cavitation surge, Mode Il (Horiguchi et al., 2000B). For this reason the
frequency does not depend on the inlet conduit length.  In addition, the frequency of this mode does not depend on
the geometry of cascade and this mode occurs also for single hydrofoils (Watanabe et al., 1998). However, the
Strouhal number 1.3 is significantly larger than that observed for single hydrofoils (0.1-0.3, asin Arndt et al., 2000).
This mode starts to appear at much larger valuesof o /2a than other modes.

Modes I11-V1 are various modes of rotating cavitation with various interblade phase differences. For Mode 111,
the phase of disturbance on the upper blade advances by 90 deg, which means that one cell of disturbance per 4
blades rotates around the rotor in the direction of impeller rotation (downward, in Fig.1) relative to the blades.
Observed from a stationary frame, the disturbance of Mode Il rotates around the rotor with an angular velocity
higher than impeller speed. This is conventiona rotating cavitation. In the same way, Mode IV represents one-
cell rotating cavitation propagating in the opposite direction as the impeller rotation, called “backward rotating
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cavitation”. Mode V represents 2-cell rotating cavitation :the cavities are just ocillating with 180 deg interblade
phase difference but it can be viewed also as a result of two cells rotating either forward or backward. This mode
does not appear for inducers with odd number of blades. Mode VI is one-cell forward rotating cavitation with
larger propagating speed than Mode |11 and this mode is called “higher-order rotating cavitation™.

All modes except for Mode IX start to occur when the cavity length exceeds 65% of the spacing. So, those
modes might be caused by the interaction of the local flow near the cavity trailing edge with the leading edge of the
opposing blade, as was explained for alternate blade cavitation. Mode IX occurs for much shorter cavities and no
physical explanation has been given so far. Although only Mode |1l (conventional rotating cavitation) is generally
observed, examples of other modes are introduced in the following sections.

6.1 Conventional Rotating Cavitation (Modelll)

Figure 12 compares the propagation velocity ratio, defined as the ratio of the rotationa speed of the disturbance
in the absolute frame to the rotational speed of the impeller, plotted against the cavitation number at the tip
(Watanabe et ., 1999). We observe that
(1) 4-bladed inducers have higher propagation velocity ratios than 3-bladed inducers, and
(2) the propagation velocity ratio decreases as we decrease the cavitation number.

The above tendencies are well simulated by the model. However, the onset range predicted is much larger in
terms of the cavitation number. Figure 13 shows the plot of cavity length at the tip for a 3-bladed inducer at
various flow coefficients (design point is @=0.078), with the onset point of rotating cavitation. Rotating
cavitation starts to occur when the cavity length reaches about 70% of the spacing. So, in this case, the cavity
length is more useful than o /2a for the prediction of rotating cavitation.

6.2 Backward Rotating Cavitation (Mode V)

Backward travelling rotating cavitation was identified for the first time by Hashimoto et a. (1997). Figure 14
shows the spectrum of inlet pressure fluctuation of a 3-bladed inducer rotating at fy =117Hz. Component F with
fg =138Hz is conventional forward propagating rotating cavitation. With this component, an additional
component with 3(f- - fy)=64Hz, which is the frequency at which the blades cut the cavitating region, is observed.
At the cavitation number slightly larger than the forward rotating cavitation onset, Component B with fg =159Hz
is observed. With this component, an additional component with 3(fg + fy) =828Hz is observed. This
frequency is obtained if we assume that the cavitated region rotates in the direction opposite to the impeller rotation.
Observation of cavity oscillation by high-speed film also suggests backward rotation. Figure 15 compares the
propagation velocity ratio, predicted and observed. It is not unreasonable to correlate the observed rotating

Experimen?s ) o ¢=0.080
3-bladed inducer 4-bladed inducer
A Tsujimoto et al. (1997) @ Tsujimoto lab. (no sweap) " =0.085
A Kamijo etal. (1993) O S'"a:'i'l"y 0.8 o ¢
4 de Bernardi et al. (1993) o R.C. 0 A ©=0.090
. 16 e <= o
el ® 0.6 -
= o - o O
S 1.5 OO 4-bladed inducer (Th.)| 0.20 § o 5
2 (0.670) o
S 14t AoDO
3 04 AoDO
g 13k AOD
5 ' \ 3-bladed inducer (Th.)| g ¢ o
® 12f g (0.656) 02} o
& g Alternate blade
- ernal
8- 11k Jaa? cavitation
& 453 0 | | I
0.22
1 NOVNPESTTIONND UUTINY v e 0 0.05 0.1 0.15 0.2
0 00z 004 006 008 01 Cavitation number, o
Cavitation number at tip
Fig. 12 Comparison of Mode III with conventional Fig. 13 Cavity length and rotating cavitation onset point

rotating cavitation, from Watanabe et al., 1999 for a 3-bladed inducer
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cavitation and Mode IV predicted.

Another example of backward rotating cavitation was obtained during the tests of a forward swept 4-bladed
inducer similar to F30 in Fig. 8, but with the amount of the forward sweep increased to 50 degrees. Figure 16 (a)
shows the spectrum of inlet pressure fluctuation. The rotational frequency is fy =66.7Hz . We observe
conventiona rotating cavitation around 94Hz ( f /fy =1.41) for the entire range of cavitation number shown.

Alternate blade cavitation occurs around ¢ =0.063. Backward rotating cavitation is found a 129Hz
(f/fy=(9)1.95) for 0.065<0 <0.078. This propagation velocity ratio of —1.95 is larger than that for the three
bladed inducer (-159/117=-1.36) mentioned before, and is in qualitative agreement with the theoretical results of
—1.25 for four bladed inducer and —1.0 for three bladed inducer at o /2a =1.0.

Figure 16 (b) shows the plot of the phase of inlet pressure fluctuation components at various circumferential
locations denoted by 6. For the backward rotating cavitation, the phase advances as we proceed in the direction
of the impeller rotation and reaches 360 degrees as we make one turn.  This shows that a pressure pattern with one
cell is rotating in the direction opposite to the impeller. Fig. 16 (b) also shows that the conventiona rotating
cavitation and the alternate blade cavitation have one and two cells respectively and that both of them are rotating in
the same direction asthe impeller.

So far the observations of backward rotating cavitation are limited to the above two cases. Recently, a third
example was obtained at NAL in the tests to develop new inducers for LE-7A engine. A detailed anaysis is now

| fx=117Hz

=== e .
honbonent B, £o=159kz Alternate blade Backward rotating
cavitation = _ cavitation

e = 0.080
0 PWA SP A 200Hz Conventional rotating ==
cavitation 0.070
fnill THz
AW 0.060
0.010 =
0.050
0.005

1 0.040
T T T T
0 100 200 300 400 500
Frequency, f[Hz]

(a) Spectrum of inlet pressure fluctuation

Fig. 14 Spectrum of inlet pressure fluctuations,
with forward and backward rotating cavitation,
from Hashimoto et al., 1997 360

rotation Baqu\(ard rotating
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v,
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¢ s fih=1.41
£ N 0=0.040
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glRa
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1

Q

!
S

Fig. 15 Comparison of Mode IV with backward
rotating cavitation, from Watanabe et al., 1999
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underway and the results will be made available in the near future.

6.3 Higher Order Rotating Cavitation (Mode V1)

Figure 17 (a) shows the spectrum of the inlet pressure fluctuation observed for a 3-bladed inducer at the rotational
speed fy =50Hz. Conventional rotating cavitation is observed for 0.04 <o <0.058, a f.=61.25Hz. In the
region of cavitation number larger than that of conventional rotating cavitation onset, 0.06 <o <0.09, we observe a
component with f, ,=250Hz. Although hidden behind the 250Hz component, there is a component
with f,o = 243.75Hz over 0.058 <o <0.068. Figure 17 (b) shows the spectrum of stress fluctuation of a blade. The
components with nearly constant frequency are considered to be electrical noise. With conventiona rotating
cavitation, for 0.04 <o <0.058, we observe a component with f.— fy =11.25Hz which is the frequency of
conventional rotating cavitation observed in the rotating frame. In the same way, we observe a component with
fro — Ty =200Hz, which is the frequency of forward propagating f,,,=250Hz component observed in the
rotating frame. So, this component may correspond to the higher order rotating cavitation. In the region
0.06 <o <0.068, we observe a component with ., =243.75Hz , which is the same as that observed in the inlet
pressure fluctuation. This can be the higher order surge mode oscillation.

Figures 18 (@) and (b) show the phase (positive value means phase advance relative to P1 and G1) of the pressure
and stress fluctuations measured at various circumferential locations. They clearly show that both conventional
rotating cavitation (with 61.25Hz and 11.25Hz) and the higher order rotating cavitation (with 250Hz and 200Hz)
have one cell and rotate in the direction of impeller rotation. The higher order surge mode oscillation with
frs = 243.75Hz has the same phase over the circumference. The frequencies of Mode VI and Mode IX (higher order
rotating cavitation and higher order surge, respectively) for 3-bladed inducer observed in the stationary frame are
both about 4.2 times the rotational frequency at o /2a =1.0. Thisis close to the experimental values of 5.0 and 4.88
for higher order rotating cavitation and higher order surge mode oscillation respectively.

The component in Fig. 17 (a) around 240Hz observed over o > 0.075 has low coherence between the pressure
signals at different circumferential locations. For this reason, and also because it aso occurs at higher inlet
pressure without cavitation, we consider that the component is caused by abackflow vortex structure at the inlet.
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0.150 rotating cavitation 0.150

rotating cavitation
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surge mode Higher order 0120 &
oscillation surgeil mode 110 &
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Astress

[MPa] 0.
10 0.025 (3000rpm)
Ay
0.00 5=
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Frequency [Hz] Frequency [Hz]
(a) Spectrum of inlet pressure fluctuation (b) Spectrum of stress fluctuation of a blade

Fig. 17 Higher order rotating cavitation in a 3-bladed
inducer at ¢=0.080, ¥ =0.105, 3000rpm
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6.4 Higher Order Surge Mode Oscillation (Mode | X)

Figures 19 (@) and (b) show the spectrum of pressure fluctuations measured at two circumferential locations
separated by 90 degrees, on the casing wall and at midchord (Motoi et a., 2000). The inducer has three blades and
the rotational frequency is fy, =150Hz. We observe sharp spectrum pesks at the blade passing frequency 3fy and
itsharmonics. In addition, we observe a broadband component
centered at 705Hz, which corresponds to 4.7 times the rotationa frequency. Note that the peak is higher than the
blade passing component. Figure 19 (c) and (d) show the coherence and the phase of the cross spectrum between
those pressure signals.  We observe high coherence around 705Hz, and the phase difference there is zero. This
means that the 705Hz component is a surge mode oscillation. Blade stress fluctuation has similar spectrum and has
high coherence with the case pressure fluctuation around 705Hz. This component is important since the frequency is
often close to that of the first bending mode of blade vibration.

Thefollowing characteristics are found:

(1) Thefreguency does not depend on the length of inlet pipe. So, it is system independent.
(2) Theonset cavitation number (o = 0.1) issignificantly larger than that of rotating cavitation (o = 0.06).
(3) Thefreguency is proportional to the rotational frequency.

The characteristics of (1) to (3) agree with those of Mode I X.

The Strougal number of Mode IX based on cavity length is kept nearly constant (S =1.3) and the frequency
changes from 3 times the rotational speed at o/2a=0.12to 12 times a o/2a=5.61. This includes the
experimental value, 4.7 times the rotational frequency, but such large dependence on o /2a was not identified in
experiments.

The backward rotating cavitation (Mode 1V), the higher order rotating cavitation (Mode V1), and the higher order
surge mode oscillation (Mode 1X) introduced here are al quite repeatable for each case but they can be observed
only under limited circumstances, as compared with conventional cavitation surge and rotating cavitation. The
reason for that is not known as yet.

7.CAVITY DEVELOPMENT INALTERNATELY CUT-BACK INDUCER
For the purpose of suppressing rotating cavitation by promoting alternate blade cavitation, a series of tests was
carried out with inducers having the leading edges of the blades alternately cut back.
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Figure 20 shows the results for Inducer 0-15, for which the leading edge of an unswept inducer is cut back
alternately by 15 degrees at the tip. Let us focus on the analytical results of Fig.20 (a). At sufficiently larger
o/ 2a, the cavities on longer blades are longer, as expected. As we decrease o/2a from o/2a =7, the cavities
on both the longer and shorter blades grow, but when the length of the cavity on shorter blades reaches 65% of the
spacing L1 shown in the figure, it grows more rapidly and the cavity on the longer blades becomes shorter. As a
result, we have a region in which the cavities are longer for shorter blades. Next, let us consider the cavities at
smaler g/2a, say o/2a=10. We have longer cavities on longer blades and both cavities are longer than
0.65L0 and 0.65L1 for longer and shorter cavities respectively. As we increase o/2a, both cavities become
shorter, and when the shorter cavity becomes shorter than 0.65L 1 it decreases quickly and the longer cavity becomes
longer. The results of the stability analysis show that the branch for smaller ¢ /2a is statically unstable.

Experimental results are shown in Fig.20 (b). We do have a region in which the cavities are longer for shorter
blades, sandwiched by the regions with longer cavities on longer blades. Although we may need to modify the
number from 65% to 90%, we believe that the strange behavior is caused by the interaction of the local flow near the
cavity trailing edge with the leading edge of the neighboring blade. The two types of cavitations are shownin Fig.21.
We observed surge mode oscillations around the transition points between the two types of cavitations and it proved,
unfortunately, that the alternate cut back is not agood idea for stabilizing the operation of the inducer.
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8. CONCLUSION

Cavitation instabilities in turbomachines are reviewed correlating with the results of a stability analysis based on
a two-dimensional linear closed cavity model. Various modes of cavitation instabilities predicted by the analysis
do occur in real machines, although generally observed instabilities are limited to cavitation surge and rotating
cavitation. It was shown that the most important factor for the cavitation instability is the steady cavity length, or
o /2a, which was introduced by Acosta to represent the partial cavity length more than 40 years ago. It should be
emphasized that the cavities longer than 65-90% of the spacing are basically unstable for a number of instability
modes, although real onset of instabilities is more limited than predicted by the analysis.  Since such cavities occur
quite generally under normal operating conditions of rocket pump inducers, it is necessary to confirm that all
possible modes are adequately suppressed under all operating conditions encountered in real flights.
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