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ABSTRACT

There have been many and substantial advances in LES since the pioneering works of
Smagorinsky (1963), Lilly (1967), Deardorff (1974), Schumann (1975) and others. Advances
have been made in: modelling the unresolved processes; accurate numerical methods on
structured and unstructured grids; detailed comparison of LES calculations with DNS and
experimental data in canonical flows; extensions to include additional phenomena, e.g.,
turbulent combustion; and in computational power, which has increased by about four
orders of magnitude since the 1970’s.

In spite of these advances, there remain fundamental questions about the conceptual
foundations of LES, and about the methodologies and protocols used in its application. The
purpose of this talk is to raise and to discuss some of these questions.

Before posing the questions to be addressed, it is necessary to introduce the terminology
used to describe LES. This needs to be done with some care in order to include existing
divergent views on LES, and to avoid pre-judging some of the questions raised. The fun-
damental quantity considered in LES is a three-dimensional unsteady velocity field which
is intended to represent the larger-scale motions of the turbulent flow under consideration.
We refer to this as the resolved velocity field and denote it by W(x, t). In the “filtering
approach” introduced by Leonard (1974), W(x, t) is identified as the filtered velocity field ,
denoted by U(x, t), obtained by applying a low-pass spatial filter of characteristic width
∆ to the underlying turbulent velocity field, U(x, t). The effects of the sub-filter scales
are modelled, and the resulting evolution equation for W(x, t) is solved numerically on a
mesh of spacing h. In contrast, in the “MILES approach” advocated by Boris et al. (1992),
the Navier-Stokes equations are written for W(x, t) and are solved on a mesh of spacing h
which is insufficiently fine to resolve the smaller-scale motions, using a numerical method
designed to respond appropriately in regions of inadequate spatial resolution. In order to
accommodate all viewpoints we refer to W(x, t) as the resolved velocity field, and to ∆ as
the turbulence-resolution lengthscale, which for MILES we define as ∆ = h. Turbulent mo-
tions that are not resolved are referred to as residual motions, and we use the term residual
stress for the quantity often referred to as the sub-grid scale (SGS) stress, or the sub-filter
scale stress.

The fundamental quantity in LES–namely the resolved velocity field W(x, t)—is an
extremely complex object. It is a three-dimensional, time-dependent random field, which
has a fundamental dependence on the artificial (i.e., non-physical) parameter ∆, and which
(in some approaches) depends also on the mesh spacing h and on the numerical method
used. It is not surprising, therefore, that LES raises non-trivial conceptual questions.

We address the following ten questions:

1. Is LES the right approach?



2. Can the resolution of all scales be made tractable?

3. Do we have sufficient computer power for LES?

4. Is LES a physical model, a numerical procedure, or a combination of both?

5. How can LES by made complete?

6. What is the relationship between U and W?

7. How do predicted flow statistics depend on ∆?

8. What is the goal of an LES calculation?

9. How are different LES models to be appraised?

10. Why is the dynamic procedure successful?

There is insufficient space here to discuss these questions fully. Prior to the Workshop,
in November 2003, a paper addressing these questions will be available at
http://mae.cornell.edu/~pope/Reports.

For flows in which rate-controlling processes occur below the resolved scales (e.g., near-
wall flows and combustion), LES calculations have a first-order dependence on the modelling
of these processes. Approaches that include a statistical resolution of all scales provide a
more fundamental description of the rate-controlling processes; but it remains a challenge
to devise such approaches that are computationally tractable and free of empiricism.

The relationship between the resolved LES velocity field W(x, t) and the turbulent
velocity field U(x, t) can only be statistical. Corresponding to a turbulence statistic Q, the
LES provides a model Qm for Q of the form

Qm = Qw + Qr, (1)

where Qw is the contribution from the resolved motions (which is obtained directly from
W) and Qr is the modelled contribution from the residual motions. In LES, the turbulence
resolution lengthscale ∆(x) is an artificial parameter of prime importance. As a rule,
as ∆ decreases, Qw increases and Qr decreases. Unless demonstrated otherwise, there is
every reason to suppose that LES predictions Qm depend (maybe strongly) on ∆. As a
consequence, characterizing the dependence of predictions on ∆ must be part of the overall
LES methodology.

As currently practiced, LES is incomplete because the turbulence resolution lengthscale
∆(x) is specified subjectively in a flow-dependent manner. It can be made complete through
adaptive LES. The variation of ∆(x, t) is controlled (by grid adaption) so that a measure
M(x, t) of turbulence resolution (e.g., the fraction of the kinetic energy in the resolved
motions) is everywhere below a specified tolerance εM .

An alternative principle is advanced to justify the dynamic procedure, namely: the LES
model coefficients should be chosen to minimize the difference between Qm(∆) and Qm( ˜∆)
(where ∆ is the value of ∆ used in the LES, and ˜∆ is somewhat larger). It is shown that this
principle applied to the Smagorinsky model results in essentially the same formula for the
coefficient cs as the standard dynamic model. Rather than depending on scale similarity,
the procedure selects cs to minimize the dependence of Qm on ∆ in regions where scale
similarity does not apply.
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