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Sea surface under Hurricane Isabel photographed from a height of 150 m. Wave heights are

m. (M. Montgomery, CSU).




Sea surface under Hurricane Isabel photographed from a height of 200 m Wave heights are ~ 10

m. (M. Montgomery, CSU).




Effects of surface waves on winds and currents:
e wave drag: wind momentum — wave momentum (& sometimes vice versa).
e wave pumping: turbulent momentum flux by wave-correlated eddies.

e wave breaking: wave momentum — current momentum; wave-enhanced
dissipation and mixing; bubbles and droplets.

e wave-induced vortex force and Lagrangian transport = e.g., Langmuir
circulations (cf., radiation stress divergence).

... = wind-wave-current co-evolution.

Why has it been so difficult to make progress on wind-wave-current interactions?
e [ he pattern complexity is high.
e T he instrumental environment is fierce.

e [ he problem, in its entirety, is uncomputable.

Our approach is to isolate particular aspects by a combination of asymptotic theory
and artful (i.e., non-fundamental) computations.



An Asymptotic Theory for Wave Effects on Currents

Elements:

e primary waves: n~aq, L~ 1/ky, u~ ec,

(e = aok, < 1).

e wave-forced long waves and sea-level set-up: n ~ ea,, L = 1/¢ck,, u ~ €2c,.

e currents in a rotating, stratified fluid: n ~ ea,, L = 1/k,, u ~ €2co.

Wave-Averaged Large-Eddy Simulation (LES) Equations for Currents:

D
DU s ut ~vp+ 9
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V-u
D
_ ,C’
Dt(p )
with wave-averaged forcing terms
e Bernoulli head: B = 1 u%™¢. u?™e

= — VB+V+5GS
0

u’-V(p,C) + SGS

o Vortex force: ¥V = u x (2Q+ V x u).

e horizontal Stokes drift: u* 1z = [(ft uvwve dt’) - V] uwave,

e Stokes vertical pseudo-velocity: u®t -z

—V - ([7votd).



Location of 10% buoyant surface particles initially and ten minutes after being randomly released

in a LES of equilibrium rotating, stress-driven flow with the wave-averaged vortex force.
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Down-wave, down-wind u(z) (left), |u/ w'|(z) (center), and diagnosed eddy viscosity, x(z) (right),
in a LES of equilibrium rotating, stratified, stress-driven flow with (black) or without (red) the

wave-averaged vortex force. h is boundary layer depth, and w, is friction velocity.



Forcing DNS & LES Models by a
Stochastic Representation of Wave Breaking

We assume that a breaking wave locally provides a forward momentum impulse

A and sub-grid-scale energy generation W in a volume spreading downward and

forward from the point of breaking.

This is modeled by adding terms to resolved momentum and SGS energy equations:
ou Oe

ot + ot *

A & W depict the effect of a breaking event after the completion of the initial
plunging and/or spilling motions.
The net impulse from A compares to surface stress T by

1

0
/ Ay, dZ <— —T .
_H Po

A & W are the sum of discrete breaking events randomly located in (x,t) and
randomly distributed in k (or ¢), each with a specified (x,t) shape locally.

DNS: Turbulence develops from the instability of the coherent impulses from A,
and W = 0.

LES: A and W # 0 must be filtered to the resolved scales in (x,t), while preserving
the total momentum and energy injection rates.
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Composited velocity fields in a laboratory tank at a sequence of times after a breaking wave event:

At = 3, 10, 26, & 35 s (left) and 43, 50, & 58 s (right). After Melville et al. (2002).
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Down-stress, down-wave u(z) (left) and diagnosed «(z) (right) in a DNS for non-rotating,

unstratified flow with equal surface stress alternatively as Couette b.c. (red), uniform stress

(green), and stochastic breaking-wave impulses (black). X is surface wavelength < domain height.



Summary

1. We are examining pieces of the wind-wave-current interaction problem, focusing
on wave-averaged effects

e drag, pumping, breaking, vortex force, Lagrangian advection

and moving towards putting them all together in boundary-layer and larger-scale
LEddyS models (and LWaveS models someday).

2. In the oceanic boundary layer, the primary effects of waves are
e wave-averaged vortex force and 3D Stokes advection.

e breaking-wave impulses and mixing/dissipation.

3. The wave-averaged influences cause coherent Langmuir circulations that en-
hance the turbulent variance and dissipation rate, transport efficiency, and boundary-
layer entrainment rate.

4. The breaking-wave influences modify the near-surface profiles of u(z) and
(p,C)(z), Langmuir circulations, and turbulence due to enhanced intermittency,
mixing, and dissipation (in comparison with Monin-Obukhov structure near a solid
boundary).
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