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With some approximation, the large-eddy equations for flows comprised of NV ideal gases can be written:

Pa+V-(pau+Jy)=0, a=1,2,..,.N, (1)
m+ V. (puu+pd—71)=pg, (2)
E+V-(Eu+p§-u—1-u+q)=m-g, (3)
T » N oy
p=pYoH, —e) , Haz/Tocp,a(ﬂdT, T:p—R, R:RO;MC;, (4)

where J,, is a subgrid-scale (sgs) mass flux vector, T is the sgs stress tensor and q is the sgs heat flux vector.
These subgrid terms can be modeled by analogy to the Navier-Stokes equations, i.e.,
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where D, p, up and k are grid-dependent diffusivities, shear viscosity, bulk viscosity and thermal conduc-
tivity, respectively. High-wavenumber models for these coefficients, appropriate for Cartesian grids, are
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where the overbar denotes a Gaussian filter. In practice, Cp is chosen to reduce overshoots and undershoots
in the mass fractions, C}, is tuned to reduce ringing in the vorticity field, Cp is adjusted to reduce Gibbs
oscillations near shocks and Cj, is selected to reduce ringing in temperature. The derivatives in (9), (10)
and (11) provide a k" weighting of the damping terms in Fourier space. Convergence rates of O(r) have
been demonstrated in one-dimensional simulations of a breaking wave. Larger values of r lead to shaper
truncation of the energy spectrum, and hence, a broader inertial range. For r = 8, the following sixth-order
compact scheme has been found to work well for computing the derivatives,
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Large-eddy simulations have been conducted using these models in conjunction with 10th-order compact
differencing and 4th-order Runge-Kutta timestepping. Superior results are obtained, compared to various
MILES algorithms, on a variety of test cases, including Shu’s problem, a breaking wave, the Taylor-Green
vortex, Richtmyer-Meshkov instability and Rayleigh-Taylor instability.

This work was performed under the auspices of the U.S. Department of Energy by the University of
California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.



Taylor-Green Vortex
64 x 64 x 64 grid points

Breaking Wave

e 64 grid points 25 ‘ ‘ ‘
10° ¢ Exact solution E Semi-analytic solution ,
107 L —-— Compact (LES) ] —-—-- Compact (LES) / /
——- PLMDE (MILES) ———— PLMDE (MILES) v
E 10 | e WENOS (MILES) ] o, WENOS (MILES) vl
R N - R ALE (MILES) £y,
& 10 [ z Vi
> o
(o2} -10 =
é 10 3 ag
“110’“ L w
-% o | 1.5 b
o
10" L
107k
-15 1 . . . .
10 0 0.5 1 1.5 2 2.5 3
Wavenumber time

Figure 1: Comparisons of high-resolution (compact) LES method against standard MILES techniques. On
the left is the density-energy spectrum of a compressible wave just prior to shock formation. On the right is
normalized total enstrophy for the Taylor-Green vortex.
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Figure 2: Side-on views of mixing region from 11523 point large-eddy simulation of Rayleigh-Taylor instabil-
ity. Top left is density, top right is subgrid-scale diffusivity, bottom left is vorticity magnitude and bottom
right is subgrid-scale viscosity.



