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Introduction

Rayleigh-Taylor (RT) instability occurs when fluids
of different density are subject to an acceleration-
induced pressure gradient opposite in direction to the
density gradient. The instability is driven by buoyancy
forces due to local density variations. Direct numeri-
cal simulations (DNS) of miscible RT instability are
unable to settle basic questions concerning growth-
rate because resolution limitations prevent sufficiently
high Reynolds numbers or self-similarity from being
attained. The purpose of this paper is to apply the
stretched-vortex model to large eddy simulation (LES)
of RT instability, and compare these with DNS results.

Governing equations

The equations of motion are obtained by Favre-
filtering those used in the direct numerical simulations
of Cook & Dimotakis1. The Favre-filter is defined by

f̃ ≡
ρf

ρ
, (1)

where f is any field, ρ the density,

f ≡

∫
G(x − x

′)f(x′)dx
′, (2)

x the spatial coordinate vector, and G the filter func-
tion. The fluids are assumed to be incompressible and
the density variable due to changes in mixture com-
position. The Favre-filtered heavy-fluid mass-fraction,
Ỹ , and the filtered heavy-fluid mole-fraction, X, are
related to the filtered density, ρ, by

1

ρ
=

Ỹ

ρ2

+
1 − Ỹ

ρ1

and X =
ρ − ρ1

ρ2 − ρ1

, (3)

where ρ1 and ρ2 are the light- and heavy-fluid den-
sities, respectively. The Favre-filtered continuity,
species-transport, and momentum equations are

∂ρ

∂t
+

∂ρũj

∂xj
= 0, (4a)
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∂
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, (4b)
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, (4c)

where D is the diffusivity, p the pressure, τij the vis-
cous stress tensor, g the acceleration, qj the subgrid-
scale (SGS) scalar flux, and Tij the SGS stress tensor.
Equations (3), (4a), and (4b) imply
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)
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1
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∂ρqj

∂xj
(5)

and this constraint is used instead of (4b).
Equations (4a), (4c), and (5) are closed using the

stretched-vortex SGS stress model of Misra & Pullin 2

and the stretched-vortex SGS passive scalar mixing
model of Pullin3. These uniform-density models are
adpated to the variable-density case following Kosovic
et al.4. For a single subgrid vortex, the SGS stress is

Tij = K(δij − eiej) (6)

where K is the subgrid kinetic energy per unit mass,
and e = (e1, e2, e3) is the unit vector of the subgrid
vortex axis. The SGS scalar flux is

qj = −
1

2
∆K1/2(δij − eiej)

∂Ỹ

∂xi
(7)

where ∆ is the local mesh size. Together with (3) and
(5), this implies
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. (8)

The diffusive (and viscous stress) term is written such
that the original unfiltered equation is recovered when
contributions from the model are small. In our numeri-
cal scheme, the divergence of the Favre-filtered velocity
is used in the solution of a variable-coefficient ellip-
tic equation for the filtered pressure. K is estimated
from a prescribed energy spectrum, either E(k) =
K0ε

2/3k−5/3 (Kolmogorov spectrum without viscous
cutoff) or E(k) = K0ε

2/3k−5/3 exp[−2k2ν/(3|a|)]
(Lundgren spiral spectrum), where k is the wavenum-
ber, K0 the Kolmogorov prefactor, ε the local cell-
averaged dissipation rate, ν the kinematic viscosity,
and |a| the axial strain along the subgrid vortex
axis.4,5 The group K0ε

2/3 is estimated from the local
second-order velocity structure function using circular
averages in the homogeneous plane.5 The proportion
of subgrid vortices aligned with the principal exten-
sional eigenvector of the resolved rate-of-strain tensor,
S̃ij , and the resolved vorticity vector, ω, is given by
λ and (1 − λ), respectively, where λ = λ3/(λ3 + ||ω||)
and λ3 is the principal extensional eigenvalue (model
1b2).

Results

Figure 1 shows a constant mole-fraction isosurface
from a 1282 × 512 LES of miscible RT instability, at a
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Fig. 1 X = 1/2 isosurface at a density ratio ρ2/ρ1 =
3. Red indicates heavy-fluid (X = 1) and blue light-
fluid (X = 0).

density-ratio of 3. The acceleration is in the vertical di-
rection. The top and bottom of the domain are no-slip
walls, and the transverse homogeneous plane is peri-
odic. This simulation uses the unbounded Kolmogorov
spectrum for the subgrid energy. The Reynolds num-
ber is about 18,000, where the Reynolds number is
defined by the thickness of the mixing zone, its rate
of growth, the arithmetic mean density and the vis-
cosity. For comparison, the highest Reynolds number
obtained by DNS is around 5,500 on a 5122 × 2040
grid.6

In this example, the density field exhibits
small-amplitude (∼ 1% ρ1) high-wavenumber un-
der/overshoots (ρ < ρ1 or ρ > ρ2) which are, however,
unphysical. In the implmentation described here, the
excursions are controlled by means of a circular spec-
tral filter in the homogeneous plane, and a compact
Pade filter in the vertical inhomogeneous direction.
The filters are used to control wavenumbers in the
range k > kc, where kc = π/∆ is the model cutoff
wavenumber. Without such filtering, the amplitude of
the excursions may grow to as large as 10% ρ1.

Figure 2 shows mixing-zone growth as measured
by the bubble and spike heights, hB and hS, respec-
tively. These are defined in terms of the lateral av-
erage filtered mole-fraction, 〈X〉, which is a function
of the vertical coordinate, z, as 〈X〉(z = hB) = 0.99
and 〈X〉(z = hS) = 0.01. In the absence of exter-
nally imposed length-scales, and at sufficiently large
Reynolds number, classic dimensional analysis sug-
gests the growth will be quadratic. In this example,
bubble growth is almost linear.

Performance of the model is assessed by comparison
of coarse resolution LES against fully-resolved DNS
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Fig. 2 Mixing-zone growth. hB > 0, hS < 0.
τ =

√
L/Ag, where L is the lateral dimension of the

computational domain and A = (ρ2 − ρ1)/(ρ2 + ρ1).

at three density-ratios: 5/3, 3, and 7. The initial
conditions for the LES are obtained by filtering the
DNS data at a time when the mixing-zone has grown
sufficiently thick to be represented on the coarse LES
grid. The Reynolds numbers for these tests are limited
to less than 4,000. Statistics for comparison include
mixing-zone width, mole-fraction mean and variance,
kinetic energy and dissipation rate, and spectra.
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