479

A DATA-DRIVEN MACHINE ARCHITECTURE
SUITABLE FOR VLSI IMPLEMENTATION

A. L. Davis
Computer Science Department
University of Utah
Salt Lake City, Utah 84112

ABSTRACT:

A machine architecture is presented which is capable of supporting very high
levels of concurrency. The machine language of the class of machines
described here is a graphical program schema known as data-driven nets. The
machine architecture is arbitrarily extensible and consists of a recursively
organized hierarchy of homogeneous processor-store modules. System control
is decentralized, and each module is a completely asynchronous processing
site, capable of executing any machine language program. Resource
allocation is performed dynamically on the basis of the amount of available
concurrency in the program and on the availability of physical resources.

KE§_§E;&;€ VLSI, concurrency, pipelining, recursive hierarchy, data-flow.

CALTECH CONFERENCE ON VLSI, January 1979

480 A.L.bavis

I. INTRODUCTION

In an attempt to increase the performance of computing machines, there
appears to be two main approaches: 1) to use faster components in existing
architectures, and 2) to design new architectures and programming methods,
which are capable of exploiting high degrees of concurrency. The first
approach is inherently limited in that the effects of reduced integrated
circuit geometry, and new logic families can be expected to increase overall
system performance by only a couple of orders of magnitude. While this is
initially impressive, it does not meet the desired machine performance
estimates necessary to solve large physics problems, or that needed for
accurate weather prediction [16]. The second approach is not inherently
limited by the physical properties of switching devices. There are numerous
levels at which concurrency can be exploited in digital computers, i.e.
multiple data paths, more concurrent realization of low-level circuit
functions, overlap and pipeline processing within a single processing
element, multiple processors, etc. In developing any new "fast as possible"
machine, it is important to attempt to implement all of the above
suggestions. The work reported here will mainly be concerned with solving
the problem of how to utilize and organize systems containing large numbers
of independent processors.

In attempting to escape the performance bounds imposed by Von Neumann
architectures, it is insufficient to modify only a few aspects of the Von
Neumann style system ideas. Alternative proposals to the "clock-driven" Von
Neumann architectures are numerous. There are two areas which have some
promise. One is the "demand-driven" approach espoused by Friedman and Wise
[10]; Backus [3]; and Berkling [5]. Another is the "data-driven" approach
taken by Dennis [8]; Bahrs [4]; Davis [6]; and Arvind, Gostelow, and
Plouffe [2]. The work described here is of the data-driven variety due to
the difficulty with which demand-driven systems support intra-process
pipelining. In addition the propagation of demands takes time, and while
demand-driven programs do allow for increased expressive power, the emphasis
here is on performance. The data-driven approach naturally describes both
pipelined (vertical) concurrency, and independent operation (horizontal)

concurrency.

The work reported in this paper was supported by Burroughs Corporation. DDM1,
a prototype module of the architecture described in this paper, is a hard
wired data-driven machine, and was completed in July 1976 at the Burroughs
Interactive Research Center in La Jolla, California. Many of the early

systems ideas were developed in conjunction with Robert S. Barton. Gary
Hodgman, Lawrence Rogers, and Karl Boekelheide were instrumental in the
conceptualization and implementation of the actual machine. DDM1 now resides
at the University of Utah, where the project continues under the support of

the Burroughs Corporation.

ARCHITECTURE SESSION

A Data-Driven Machine Architecture 481

Suitable for VLSI Implementation

It is clear that any machine architecture intended to have a general
commercial appeal must be viable with respect to the changing constraints of
integrated circuit technology. For architectures which fit nicely into the
VLSI realm, the advantages are numerous. Among these are lower cost,
increased reliability, increased speed, and decreased power consumption.

The actual machine language of the class of machines presented here is
a directed graph schema called data-driven nets [6] or DDN's. DDN's are
very similar to the data-flow nets of Dennis [8] and Rodriguez [15]. The
terms data-driven and data-flow are used synonymously. The asynchronous
nature of DDN's makes it easy to decompose a given net into a set of
concurrent subnets, which can then be allocated to independent physical
resources. The main distinction between the Dennis nets and DDN's is that
in DDN's no distinction is made between the net tokens which are used for
control purposes, and other net tokens. All DDN tokens are considered to be
data items, and no explicit distinction is made to distinguish between
classes of tokens. Another difference is that the primitive DDN cell types
are slightly more high level than the Dennis nets. Finally some primitive
activities which are explicitly specified in the Dennis schema are implicit
in DDN's. An example is the Dennis "1link" which serves as both a
transmission and copy site. The functions of such 1links are implicitly
incorporated into the output mechanism of DDN operators. The result is that
both the DDN and Dennis schemas share the same properties with respect to
ease of program verification, ease of program conceptualization, and ease of
machine evaluation. Due to slightly higher 1level primitives and a less
explicit schema a DDN program graph will typically have less vertices
(cells) and arcs (data paths) than a functionally equivalent net in the
Dennis schema. This difference is mostly one of style and 1is not
particularly significant, although the differences are reflected in the
respective architectures.

The only sequencing constraint in DDN's is that of data dependence, and
since no weaker sequencing constraint exists without doing non-productive
computation [14], DDN's are naturally a maximally concurrent representation
of a given algorithm. While such concurrency may add to the "naturalness"
of the programming experience, it is useless as a speed-up mechanism unless
it can be mapped onto a set of physical resources capable of exploiting this
concurrency. If this mapping is done at run-time, then the time to map must
not overshadow the speed-up attained as a result of the concurrent

execution.

Lastly, a number of additional goals for the machine structures
presented here are felt to be desirable. Namely it is intended that these
machines be general purpose, extensible, reliable, easily programmable,
support very high levels of concurrency, and also be economical with respect
to their performance and existing technology. In particular this effort is
not concerned with one of a kind or special purpose machines. Special

CALTECH CONFERENCE ON VLSI, January 1979

482 A.L.Davis

purpose machines are perhaps ideal for a given environment, but suffer from
inherent limits in their applicability to other problems.

II. THE IMPACT OF VLSI

The advantages of high density integrated circuit technology are so
overwhelming that the constraints of VLSI must be considered as a primary
force on future architectures. A detailed analysis of these effects is
beyond the scope of this paper, but the global influences are summarized
here. Due to the tremendous commercial emphasis on MOS VLSI, the following
discussion will mainly be concerned with the properties of MOS device

integration.

The most highly publicized VLSI benefits are those involving cost. A
single custom VLSI chip (64 pin package) currently costs about $80,000 to
$300,000 to produce. Even then, production typically must be guaranteed for
about a quarter of a million parts at an additional cost of $7 to $10 per
part. This clearly indicates that VLSI cost advantages can be obtained only
if any given chip can be used in very large volumes. If a part does not
have universal appeal, then the use of such a part in a new architecture
brings about some high pressure constraints. Either the part must be used a
large number of times in a single system, or a single system must have a
very high sales volume, or some combination of the two. The number of part
types in a given system is also a major concern in that it becomes a
multiplicative factor in the system development cost.

Another factor heavily influenced by a VLSI implementation 1is speed.
The dominant speed factor is due to the capacitive effects on a given
transmission path. Typical off chip loads are on the order of 100
picofarads, while on chip 1loads are approximately one picofarad. Since
delay times are proportional to the capacitive load (for constant drive
current), this implies that signals which can remain on the chip will be
driven about 2 orders of magnitude faster than those which must be driven to
destinations off the chip. Additional speed-up can be obtained from the
decreased geometries of switching elements and conductor path lengths. This
is a very strong argument for architectures which attempt to maximize
locality of processing. For architectures in which processing and local
storage can not be done at the same locality, massive off chip delays must
be incurred as a result. The only way around the slow off chip drive
problem is to drive more current off the chip. This requires a series of
relatively large output drivers, which are extremely costly in terms of chip
real estate and power consumption. 1In addition, locality of processing will
reduce the amount of contention for a given system transmission path. This
contention is important in a highly parallel system in that the resultant
sequencing will yield reduced system efficiency.

ARCHITECTURE SESSION

A Data-Driven Machine Architecture 483
Suitable for VLSI Implementation

The number of pins is an important VLSI metric. The pin count is a
primary factor in determining whether a given system module is nicely
implementable as a VLSI circuit. Techniques to decrease physical pin count,
such as time division multiplexing are applicable in certain situations but
can not be considered a general solution. In addition, if chip types are
used in sufficient quantities to amortize the initial layout cost, then the
physical cost to manufacture the system becomes approximately linear with
pin count. In addition increasing the number of pins on a particular chip
causes decreased yield due to bonding problems. Increased pin count also
implies that even more silicon area must be allocated to connection pads and
pin drivers.

VLSI implementation also yields the more commonly discussed advantages
such as: 1) increased system reliability due to reduced part count, .2)
decreased system power consumption since voltages on a given chip scale with
physical feature size, and 3) decreased system maintenance cost as chip
replacement policies become more effective in highly integrated systems.

The extent to which these VLSI advantages can be realized is
proportional to the logic/pin ratio of the proposed system modules. If the
logic/pin ratio is relatively small then the situation is very much that of
an SSI machine. If the 1logic/pin ratio is very high then true VLSI
advantages can be obtained. This is a challenge to architects to devise
systems which can be modularized into high complexity modules which
communicate with their environment using relatively few signals.
Furthermore as integration technology advances causing feature sizes to
shrink even more, these new architectures must remain viable.

III. ARCHITECTURAL PRINCIPLES

The VLSI constraints indicate that future architectures to support very
high levels of concurrency should consist of a set of processing sites
capable of performing localized storage and computation of a reasonable
complexity. These sites should be essentially the same physical module,
which can be constructed from one or a set of part types. An additional
goal of the architecture presented here is that of extensibility. More
specifically, the architecture should be extensible without bound in the

following way:

1. Machine power should be enhanced by the addition of more
modules (i.e. allow greater concurrency due to the increased
number of processing sites);

CALTECH CONFERENCE ON VLSI, January 1979

484 A.L.Davis

2. The addition of new modules should not require any change to
the existing operating system in order to manage the
resulting larger system;

3. Additional resources should be added simply by "plugging in
new modules™ without any special tuning of the existing
hardware to create consistent system timing and communication
for the expanding system; and

4., Extensions should be available in small quantums.

The first and last points indicate that a wuser should be able to
purchase only the power needed and not much more or much less. The other
points indicate that the manufacturer only needs to support a single module,
rather than a large number of system configurations.

Systems such as these cannot be implemented in a synchronous, centrally
controlled manner. Central control of arbitrarily extensible systems
implies that the control must be able to function on an arbitrarily 1large
amount of state information, which either slows the control drastically or
requires controller modification to access the new state information. 1In an
arbitrarily extensible synchronous system the problem of unbounded clock
skew (maximum difference in the perceived clock time between any two
processing sites in the system) will cause failure. The systems described
here will therefore be asynchronous, fully distributed systems. Fully
distributed systems have the following characteristics: 1) no module of a
fully distributed system can determine the total system state, and 2) no
module of a fully distributed system can enforce simultaneity in other
modules. Holt [13] has shown that the notion of total system state in
complex asynchronous systems 1is counter productive. Furthermore the
enforcement of simultaneity in physically separate, asynchronous devices 1is

impossible.

There are many ways to organize an extensible set of modules in a
distributed control system. The advantages of hierarchical organizations
are: 1) simplification in the amount of complexity to be dealt with at a
given 1level, 2) verification by inductive methods can be done for uniform
hierarchic systems, and 3) the superior-inferior relationship can be
utilized to resolve problems such as contention and deadlock in
multi-resource systems. It will be seen that hierarchy also facilitates a
nice resource allocation policy. Recursive hierarchies are of particular
interest in that they imply that the same module (and ultimately the same

chip) can be used at each level.

ARCHITECTURE SESSION

A Data-Driven Machine Architecture 485

Suitable for VLSI Implementation

Recursive systems are nicely extensible. A recursively structured
machine is one which has exactly the same structure at every level. Clearly
physical recursion must terminate at some point. This point will be seen to
be the deepest set of resources in the physical hierarchy. Additional
advantages of recursively structured systems have been demonstrated by
Glushkov[11]. It will be shown that the width of a level in these recursive
hierarchic structures can be used to execute independent operations, while
the depth of the hierarchy will be used to facilitate pipelined operations.

IV. THE ARCHITECTURE

The architecture consists of a set of asynchronous modules which
communicate by passing messages. The basie computational unit of the
architecture is a processor-store element (PSE). A PSE consists of a
processor module (P) and its associated local storage module (S). Any PSE
can execute any machine language program, providing that it has a sufficient
amount of local storage. No module that is not a PSE can perform this
function. The architecture is a recursively organized set of these PSE's.
The recursive definition of the structure is:

<PSEn> = <Pn><Sn>

<Sn> S (ASUn>

<P > ::= <AP >|<AP ><PSE.GROUP >
n n n n+1l

>| <PSE ><PSE.GROUP >
n+l n

<PSE.GROUP
n +1

> 13= <PSE
n

+1 +1

Subscripts denote the recursive level at which the module physically
resides. <AP> is an atomic processor module, which has no further
sub-structure (contains no PSE's). Similarly an atomic storage wunit <ASU>
has no PSE substructure. The width of a <PSE.GROUP> has a physical bound.
For the DDM1 prototype, this bound is eight. The structure is depicted 1in

Figure 1.

This structure allows for a hierarchical distributed storage
organization. Any S or ASU may consist of an arbitrary amount of storage of
any desired medium. Higher 1levels of PSE's are considered 1logically
superior to lower level PSE's. It is advantageous if higher level stores
(ASU's) are slower and larger than the stores of lower levels. The
interface and functional ability of any ASU (regardless of size, speed, and
level) is the same. The structure also allows for an arbitrary number of
processors to be used concurrently. It is important to note that all AP's
are identical regardless of level. However, the processors at higher levels

CALTECH CONFERENCE ON VLSI, January 1979

A.L.Davls

486
PSE
n
P s
n n
r— - 7 = r— =
fou mass e e vy e e B B — |1 |
l l | asu I
n
I PSEna FSEn+1 o o e |"E I I I
| P [
L e e —= A p—— e i 5 e ool

Figqure 1: Recursive definition of PSE at level n.

will be more powerful, in that they contain more substructure than the
processors at lower levels. More substructure implies more internal
concurrent processing capability.

When viewed non-recursively this structure is simply a tree structure
with a single root and a possibility for up to eight sons at any node. Each
node of the tree is a PSE and is capable of executing any machine 1language
program. The leaf nodes have no substructure and therefore consist of an AP
and an ASU. At each node the fan-out is fixed but the depth of the tree is
arbitrary. In this manner the architecture allows any desired number of
PSE's to be configured for a given machine. The desired goal is for machine
performance to improve with the addition of more PSE's.

There are a number of ways to enforce this logical tree structure onto
a collection of PSE's. All involve some form of a connection network to
implement the desired communication paths. A number of general interconnect
networks have been considered: busses, crossbars, Banyan nets [12], and

ARCHITECTURE SESSION

A Data-Driven Machine Architecture 48/

Suitable for VLSI Implementation

permutation networks [17]. For tree-like machines, full connectivity is not
required. The expense of crossbar switches vary as the square of the
connected elements. Bus conflict would drastically reduce actual
parallelism in the machine. Permutation networks present a tremendous
problem in that they may need to be totally reconfigured when a single new
connection is necessary. This is difficult to do reliably in a multi-path
distributed control environment. Banyan networks have some merit, but do
not easily allow for the desired hierarchic pipelined communication.
Therefore in the DDM1 prototype, a simple 1 to 8 switch was chosen as the
interface unit between successive levels of PSE's. The result is that the
physical and logical recursive structures are the same. The structure is
fixed and cannot be dynamically changed.

Information is passed between PSE's as messages which are variable
length character strings. Upward traveling messages are passed on by the
switch in an arbiter like manner. Downward going messages contain header
fields which indicate their destination. This header is deleted by the
switch as the message is passed. Downward and upward messages are dealt
with by independent hardware, and therefore are controlled concurrently.
This character serial nature of the machine has the following advantages:

1. Hardware modules are made simpler and more applicable for
VLSI implementation due to the reduced pin count.

2 Hardware communication paths are more general in that
variable 1length information wunits can be transmitted as
varying numbers of fixed-width base characters. This
facilitates a hardware substitution strategy for modules.
Each module can interpret the variable 1length message and
perform the indicated function.

These advantages aid in greatly reducing the cost of the hardware modules.
Some low-level performance is 1lost by doing everything serially. The
philosophy for this drchitecture is to regain that 1lost performance many
times over by providing a systems organization that allows for many highly

concurrent levels of activity.

Physical queues are placed between 1levels of PSE's in order to
facilitate pipelining and increase physical module independence. Without
queues, the sender of a message would need to wait on receiver availability.
If a queue becomes full, only then must the sender wait until the receiver
has freed up some queue space. If queue sizes are adjusted so that a sender
is rarely required to wait for space, then the system would be well tuned
for efficient processing. Optimal queue size depends on the average message
length. It is therefore impossible to guarantee that no waiting will occur.

CALTECH CONFERENCE ON VLSI, January 1979

488 A.L.bavis

Striet hierarchical control and a restricted process structure insures that
the system does not deadlock. A block diagram of the PSE structure is shown
in Figure 2. In the DDM1 prototype, all communication paths except for the
path between the ASU and the AP, consist of 6 wires (a 2 wire
request-acknowledge control link and a 4 wire, character-width data bus).

Father PSE

IQ::= Input Queue
10 o 0Q::= Output Queue

SWITCH
T Figure 2: PSE Structure
IR EEER]
o 1 7
Son PSE's

The variable 1length, character serial message structure and DDN
representation indicate that the ASU should be a highly flexible storage
structure. Further requirements are that the ASU deal with the pipelining
of data items and the continual destruction of data items due to cell
firings. In order to increase efficiency of the PSE, all storage management
functions are performed internally by the ASU. The ASU appears as a
variable field length file system, which directly executes commands, such
as: initialize, skip, insert, read, write, delete, and index. The free
space is managed automatically by the ASU.

ARCHITECTURE SESSION

A Data-Driven Machine Architecture 489

Suitable for VLSI Implementation

This PSE structure allows for a high degree of processing 1locality in
that any PSE can execute any DDN program (assuming that there is sufficient
storage in its local ASU). In addition the PSE admits nicely to VLSI
implementation. The 1 to 8 switch can be implemented using a set of 1 to 2
switches of similar function. Using 1:2 switches, module complexities for
the DDM1 prototype (pin and gate count) are shown in Figure 3. The pin
counts include pins for power, ground, initialization, and extension. The
indicated module pin counts are rounded up to coincide with standard package
sizes.

Module Gate Count Pin Count
IQ, 0Q (1K Characters) 3,000 16
AP 20,000 64
ASU (4K Characters) 47,000 64
1:2 Switch 2,000 40
Ap + ASU 67,000 64
Ap + ASU + IQ + 0Q 73,000 64
Ap + ASU + Switch 69,000 64
PSE 75,000 64

Figure 3: PSE Module Complexities

These complexities are all within reason for VLSI designs, and are
attractive with respect to the logie/pin ratio.

CALTECH CONFERENCE ON VLSI, January 1979

490 A.L.Davis

V. AUTOMATIC RESOURCE ALLOCATION AND EVALUATION

When a message corresponding to a DDN program enters a PSE at any
level, the PSE may take one of two actions:

1. DECOMPOSITION AND ALLOCATION: if the PSE has substructure
and if there exists some set of concurrent subnets in the DDN
process, then the PSE may split the DDN and send concurrent
subnets to PSE's at the next lower level.

2. EXECUTION: if the PSE has no subresources, or if there is no
exploitable concurrency in the DDN, then the PSE executes the

DDN at that level.

To aid the decomposition process, a structural descriptor may precede
the incoming DDN in the message structure. This additional storage can
greatly reduce time required for decomposition decisions in the PSE. In
addition, each PSE must contain information about the number of available
PSE's and the sizes of their respective stores. Problems would result if a
DDN were sent to a PSE that was too large to fit in its local store. Only
the local store sizes of immediate subresources are known. This insures the
recursive nature of the decomposition process.

The decomposition process takes some time. It is important that the
speed-up gained by extra concurrency resulting from the decomposition is not
overshadowed by the time to decompose. Experiments have indicated that a
"first fit" decomposition is almost always better than a "best fit"
decomposition strategy. It is also not generally worthwhile to decompose
the DDN structure completely on this architecture. At fine granularities,
the slowdown resulting from 1loss of 1locality is not regained by the
concurrent execution of very small subtasks. The exception to this rule is
in the case of pipelining, where subtasks remain allocated for relatively
long periods of time and sustain high activity at each site.

If decomposition and resource allocation occur at run-time, it 1is
important that they be simplified as much as possible. It is possible to
perform these tasks completely at compile-time. This however is inadvisable
since it depends on knowing the run-time availability of PSE's in the
system. In a system containing large numbers of PSE's, the probability is
high that some PSE's will fail or be busy doing other things. In addition
large portions of a process may only be evaluated conditionally. A
compile-time allocation would have to allocate tasks which may never be
executed. The strategy is taken here to split the decomposition task into
two phases: 1) at compile time do all of the resource and condition

ARCHITECTURE SESSION

A Data-Driven Machine Architecture 491

Suitable for VLSI Implementation

independent work, and 2) at run-time, dynamically make the actual allocation
of executable tasks to available physical resources.

DDN's are quite randomly structured graphs and the data-driven
architecture is a very regularly structured set of resources. Direct
run-time allocation would be too slow, due to the structural disparity
between program and machine. At compile-time, the two-terminal DDN process
structure is transformed into a well structured and functionally equivalent
series parallel graph (SP-graph). Two-terminal means that the graph
contains a single "first" cell and a single "last" cell. This facilitates
the determination of net termination and initiation. SP-graphs are acyclic,
two terminal, directed graph structures which can be formed by successively
combining cells and/or SP-graphs 1in series or in parallel. The SP-graph
structures are then allocated as necessary at run-time. Data-flow graphs in
general admit nicely to arbitrary restructuring due to their asynchronous
and local control characteristics.

VI. CONCLUSIONS

An architecture and evaluation scheme for data-flow programs has been
presented. The architecture exploits recursive hierarchy to reduce
complexity and allows for the arbitrary expansion of system resources.
Physical resources are organized such that they can be used to exploit both
pipelined and independent tasks. The system exploits the notion of locality
that is important for both increased speed and decreased cost aspects of a
VLSI implementation. This notion of 1locality also indicates that this
system is not intended to exploit concurrency at the lowest possible level.
It is felt that the additional overhead involved to do this would actually
reduce overall performance levels,

The main points of departure of this approach and that of Dennis [9] is
the use of a recursive hierarchy of physical resources, the exploitation of
physical locality to decrease message frequency and increase the speed of
VLSI implementations, dynamic hierarchical resource allocation, the lack of
specialized functional modules to reduce the chip type count, and a slight
difference in the structure of the low-level schema. The architecture of
DDM1 differs from that of Arvind and Gostelow [1] in that it does not try to
achieve concurrency at all possible levels (because of the locality issue),
the interconnection scheme is much simpler which results in reduced
communication path contention, no special address space management needs to
be done, allocated tasks may consist of many cells rather than just a single
operation, and tasks are allocated only when all of their necessary input

operands are present.

CALTECH CONFERENCE ON VLSI, January 1979

4992 A.L.Davis

Analysis based on a working prototype module indicates that the machine
architecture described 1is nicely implemented in VLSI. It has been shown
that it is possible to implement an entire processor-store element as a 64
pin chip containing about a quarter of a million MOS transistors. This
logic/pin ratio indicates that true VLSI benefits can be obtained.

The disadvantages of the system described here are:

1. The current ASU design is not nicely extensible to allow more
storage capacity to just be "plugged in".

2. The fixed, hard-wire tree structure is not reconfigurable and
may result in a situation where certain PSE's in one subtree
remain idle when another heavily loaded subtree badly needs

more resources.

3. There is currently not enough empirical data from test runs
on very large programs to accurately quantify the overhead
involved in decomposition and resource allocation.

ARCHITECTURE SESSION

A Data-Driven Machine Architecture 493
Suitable for VLSI Implementation

BIBLIOGRAPHY

Arvind, Gostelow, and Plouffe. The ID Report: An Asynchronous Programming

Language and Computing Machine. University “of California at Irvine,
Computer Science Department, Technical Report #114, (1978).

Arvind, and K. P. Gostelow. A computer capable of exchanging processors
for time. Information Processing '77, North Holland, New York (1977), pp.
849 - 854.

Backus, J.. Can programming be liberated from the von Neumann style? A
functional style and its algebra of programs. CACM, Vol. 21, No. 8, pp.
613 - 614, (August 1978).

Bahrs, A.. Programming language semanties and closed applicative
languages. Proceedings of the ACM Symposium on Principles of Programming

Languages, pp. 71 - 86, (1972).

Berkling, K. J.. Reduction Languages for Reduction Machines. Interner
Bericht ISF-76-8, GMD, (1977).

Davis, A.. The Architecture of DDM1: A Recursively Structured Data-Driven

Machine. University of Utah, Computer Science Department, Technical Report
uucs-77-113, (1977).

Davis, A.. Data-Driven Nets: A Maximally Concurrent, Procedural, Parallel
Process Representation for Distributed Control Systems. University of
Utah, Computer Science Department, Technical Report UucsS-78-108, (1978).

Dennis, J. B.. Data Flow Schemas. Lecture Notes in Computer Science 5.y
Springer-Verlag, pp. 187 - 216, (1972).

Dennis, J. B., and D. P. Misunas. A computer architecture for highly
parallel signal processing. Proceedings of the ACM National Conference,

pp. 402 - 409, (1974).

Friedman, D. P., and Wise, D. S.. Aspects of Applicative Programming for
Parallel Processing. IEEE TC, Vol. C-27, No. M4, pp. 289 - 296, (April
1978).

Glushkov, V. M., et al. Recursive Machines and Computing Technology.
IFIPS Proceedings 1974, North Holland, New York, pp. 65 = 70, (1974).

CALTECH CONFERENCE ON VLSI, January 1979

494 A.L.Davis

Goke, L. R.. Banyan Networks for Partitioning Multiprocessor Systems.
Ph.D. Dissertation, University of Florida (1976).

Holt, A., and F. Commoner.. Events and Conditions. Record of the Project
MAC Conference on Concurrent Systems and Parallel Computation, pp. 3 - 52,

(1970).

Linderman, J. P.. Productivity in Parallel Computation Schemata. MIT
Project MAC, TR-111, (1973).

Rodriguez, J. D.. A Graph Model for Parallel Computations. MIT Project

MAC, TR-64, (1969).

Rudy, T. E.. Megaflops from Multiprocessors? Proceedings of the 2nd
Rocky Mountain Symposium on Microcomputers, pp. 99 - 107, (1978).

Waksman, A.. A Permutation Network. JACM, Vol. 15, No. 1, pp. 159 -
163, (1968).

ARCHITECTURE SESSION

