
SINGLE - CHIP COMPUTERS,

THE NEW V L S I BUILDING BLOCKS

Carlo H. Sequin

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley CA 94720

ABSTRACT

Current trends in the design of general purpose VLSI chips are analyzed
to explore what a truly modular, general-purpose component for digital comput
ing systems might look like in the mid 1980' s. It is concluded that such a com
ponent would be a complete single-chip computer, in which the hardware for
effective interprocessor communication has been designed with the architecture
of the overall multiprocessor system in mind. Computation and communica
tion are handled by separate processors in such a manner, that both can be per
formed simultaneously with full efficiency.

This paper then describes relevant features of X .TREE, a research project
which addresses the question how the power of VLSI of the next decade can
best be used to build general purpose computing systems of arbitrary size. In
X .TREE, a general VLSI component realizable in the mid 1980's is defined, and
its interconnection into a hierarchical tree-structured network is studied. The
overall architecture , communications issues and the blockdiagram of the modu
lar component used are discussed.

435

CALTECH CONFERENCE ON VLSI , January 1979

436

1. INTRODUCTION

By now it seems to be a well accepted
truth that computing demand will always
stay ahead of the avai lable computing power.
No matter how much computational power
can be realized on a single VLSI circuit,
there will always be customers that want to
have computing power that substantially
exceeds the capabilities of a single chip.
(Even though the fraction of those custo
me rs will decrease dramatically compared to
the numbe r of single-chip users.)

If a system is to be extended over
several integrated circuits, the question
arises how it should be partitioned onto the
various chips. This question is crucial since
the connections between chips represent an
inherent communications bottleneck. The
numbe r of interconnection points on a VLSI
chip is limited and increases at a much
s lower rate than the numbe r of gates in the
circuit. Furthermore the bandwidth through
those pins is limited; with current packaging
technology, the physical paths leading from
one chip to the next are one or two orders
of magnitude longer than on-chip intercon
nections, and possess correspondingly larger
parasitic capacitances.

It is thus important to find the right
functional blocks to be packaged onto indivi
dual chips. We can state immediately that
the partitioning should not cut through the
high-bandwidth path be tween main memory
and the actual processing circuits. Thus
memory and processing elements should
stay tightly coupled on one and the same
chip. VLSI technology in the mid 1980's,
will make it possible to pack a sophisticated
processor and a substantial amount of
memory on a single integrated circuit.

2. GENERAL PURPOSE VLSI COM
PONENTS

No matter how fast , convenient and
sophisticated VLSI design tools will become,
s tandard off-the-shelf parts will always be in
strong demand for people who want to put
together experimental systems or who want
to bring a product to marke t quickly. They
cannot afford to start from scratch and to

ARCHITECTURE SESSION

carlo H. :::> equ 1n

determine in all details, how the optimum
chip for thei r purpose could be constructed .
For small and medium volume production,
it is far more cost effective to pick a com
ponent from a limited selection of existing
parts. If these parts have already been
debugged and if applications man uals are
available, the user need not worry about all
the critical details of internal timing and
interconnections. It normally pays to choose
a somewhat overdesigned component, using
more circuitry, power or silicon area than
absolutely necessary, thus guaranteeing that
the requirements of the application will be
safely met.

The question thus arises what type of
circuits can be placed on the she lf and will
prove useful in a large number of applica
tions. Within the frame work of digital
computing systems, what kind of chip will
take on the former role of NAND gates,
flop-flops or registers ? Simple extrapola
tion of existing t rends may not be the right
answer for general purpose compone nts with
a hundredfold greater functional capability.

Memory chips with four times more
storage capacity appear on the market about
every three years now. Certainly, a 64k
word by 1-bit chip is a nice part to have , but
will a 1M-word by 1-bit chip be equally
attractive ? - Or would most customers
rather use a 64k-word by 16-bit part ? Also,
from the point of view of optimal syste ms
partitioning, discussed in the previous sec
tion, a simple me mory chip is a very poor
component. It has virtually no internal
interactions, and every time it is used, infor
mation has to go in and out through the
package pins. These shortcomings should
be remedied by adding processing power
onto the me mory chip itself.

Looking at the field of random logic,
the current trends are more obscure. There
is a certain evolution from the NAND gate
to more complicated Boolean functions such
as multi-bit logic functions, parity checkers,
arithmetic functions or priority encoders.
However there is a limit to the size of useful
logic functions that are commonly used.
The trend is to add input or output registers
to the logic functions to permit easy assem-

Single -Chip Comput e rs,
the New VLSI Building Blocks

bly of synchronous machines. Here again ,
we find a mixture of processing and storage
elements.

The most complicated parts available
today are obviously the single-chip micro
computers with a certain amount of on-chip
memory . But can these chips really be
regarded as general purpose, modular build
ing blocks in the sense of a NAND gate ?
While one can prove that all computing sys
tems could be built from nothing but
NAND gates, it is rather doubtful that we
can interconnect many, say, INTEL 8048
and produce a computing system of superior
power ! What is missing is an answer to the
question how several such components
should be interconnected and how they
should interact. While successful TTL parts
have been designed so that many of them
can be combined to form a system with
more capabilities than the sum of its parts,
the interconnection issue was definitely not
a primary concern in the construction of the
first-single chip microcomputers. In the
design of a truly modular VLSI component
for large computing systems, the communi
cations issue can no longer be neglected.

3. INTER-CHIP COMMUNICATION
Standardizing the communication

between computers is a considerably more
complicated issue than standardizing inter
connections between Boolean logic chips. In
addition to voltage levels and load con
siderations, which apply to logic chips, inter
connection of computers involves additional
issues such as link allocation, timing, mes
sage formats, addressing and routing. All
these issues have to be addressed in the
design of a truly modular general purpose
VLSI component. Hardware for effective
support of these features has to be incor
porated on the chip. The block diagram of a
potential general purpose component, con
sisting of at least a processor, memory, a
communication switch and its controller, is
shown in Fig.l using PMS notation [Bell &
Newell 1971]. The case for such "Computer
Modules" with proper consideration of the
communications issues was first made by
Bell eta/. [1973].

'i .j(

Figure I. X - NODE, a modular VLSI building block of
the mid 1980's, shown in PMS notation.

4. PROJECT X -TREE

In 1977 a research project to investi
gate these questions was started at the
University of California at Berkeley . One
specific issue was to define a modular com
ponent from which general purpose comput
ing systems of arbitrary size could be built.
Since the most advantageous way to inter
connect these components turned out to be
a tightly coupled, hierarchical, tree
structured network , the project was named
X -TREE [Despain & Patterson 1978a]. And
the projected single component, from which
this computing system would be assembled,
is known as X -NODE. The project is still in its
early stages of research. First some of the
communications issues have been addressed
in a top-down manner [Sequin er a/. 1978] .
Discussions of the design of the architecture
of X -NODE have recently been started [Patter
son er a/. 1979]. The anticipated timeframe
for a potential realization of X -Noot is the
mid-1980.'s. It is assumed that at that time
VLSI chips with about 100'000 gates and
half a million bits of storage will readily be
feasible. Key research issues are the design
of a truly modular VLSI component and the
organization of many such components into
a general purpose computing system.

CALTECH CONFERENCE ON VLSI, January 1979

438

5. INTERCONNECTION TOPOLOGIES

In an evaluation of different multipro
cessor interconnection topologies [Despain
& Patterson 1978bl, it turned out that most
schemes have one of three disadvantages.

I) The interconnecting link constitutes a
serious communication bottleneck,
such as a common bus which has to be
shared by all attached processors.

2) The switching hardware becomes
unreasonably expensive for a large
number of processors, as in fully inter
connected networks or in a full
crossbar arrangement.

3) The interconnection scheme is not
truly modular, because the require
ments for the individual components
change as the system grows. This is
the case in a hypercube network with
the topology of a cube in n dimen
sions, where the number of ports has
to increase with the logarithm of the
number of nodes.

Networks that are truly modular and incre
mentally expansible comprise lattice struc
tures in n dimensions and tree structures.
Among those, trees have the further advan
tage that the average distance between
nodes grows only logarithmically with the
number of nodes [Despain & Patterson
1978a,bl.

The primary contender for the inter
connection scheme in X -TREE is therefore a
binary tree enhanced with additional links to
form a half-ring or full-ring tree (Fig.2).
These additional links further shorten the
average path length , they distribute message
traffic more evenly throughout the tree, and
they provide the potential for fault tolerant
communication with respect to the removal
of a few nodes or links. Various placements
for these extra links have been investigated,
but most yield only insignificant improve
ment on the message traffic density and typ
ically require significantly more complicated
routing algorithms than the half-ring or
full-ring structures [Despain & Patterson
1978b].

ARCHITECTURE SESSION

Carl o H. Se quin

Figure 2. Binary tree with full -ring connections. Whe n
the dashed branches are omined, a half-ring tree is ob
tained . Notice that the children of node n have node
addresses 2n and 2n + I respectively.

6. ADDRESSING AND ROUTING

X -TREE is designed to be a truly modu
lar, incrementally expansible system. To
allow the system to grow to arbitrary size,
neither the number of nodes nor the address
space should be limited by artificial restric
tions. Thus unbounded, variable length
addresses are employed throughout [Sequin
er a/. 1978].

Figure 3. An X-TREE example in PMS notation.

Sing l e -Chlp c ompute r s,
the Ne w VLSI Building Blocks

T (one level below C)

Figure 4. Shortest path in a full -ring tree from current position, C. on node 19 to target, T , on node 50.

All communication throughout the tree is in
the form of messages. To enable effective
routing of messages, the complete address is
subdivided into a node address part and a
second part identifying a particular memory
location if that node has any memory
attached that belongs to the global address
space. In X -TREE secondary memory , as well
as all input/output, is restricted to the fron
tier (i .e . the leaves) of the tree. This is to
minimize the number of ports per node, and
thus to alleviate the restrictions originating
from the limited number of pins . A PMS
representation of an example of a small X
TR EE is shown in Fig.3.

The addressing scheme is designed so
that messages can be effectively routed from
node to node simply based on local deci
sions, involving only the current node
address and the destination address. In a
binary tree this can be achieved in a very
simple manner. The root node is assigned
node address "1". The node address of a left
child is formed by appending a "0" , and that
of a right child by appending a "1". With
that scheme any node can readily be found
by starting at the root and using the
sequence of bits in the node address to
make the routing decision at each node. To
go from an arbitrary node to another node,
one has to move up in the tree to the com
mon ancestor of the two nodes, i.e. to the
node where the address matches all leading
bits in the target address. From there one
moves down to the destination.

In half-ring and full-ring binary trees
the routing algorithm is only marginally
more complicated. The horizontal links per
mit a message to take a shortcut before the
common ancestor has been reached. It
turns out that in a full-ring tree the optimal
level to take the horizontal links is the one
where ascending and descending path are
separated by less than five link units (Fig.4).
Again the routing decision can be based
entirely on a comparison of the local node
address and the target address.

C hOIC'C or dtrccuont
u 1 functaon o f rclauve laract poS~Iton

for J """' left ! rl};hl netr for
Ch OICC lcfl left hnc hnc rl¥ht naht

I up Ul' up u p u p up

above : ldl lc fl lefl naht fl&hl ll&hl

J fl&hl fll!,h l rl&hl lefl lefl l<fl

I up lefl PfOC proc naht u p

IC\ el 2 lefl up b.1~k bJCk up rt&h1

J f l¥ hl i IJ nwn l b• ck b.1rk rdown lefl

I up I left kJ0\\0 rdo•n fl&ht up
~low 2 left I up rUown lllu .,. n up rl&hl

J ld .;"' n l \down left uc.ht rdo• n \ rdov. n

Table 1. Decision table for full -ring tree routing algo
rithm

Some fault tolerance can be achieved
by listing secondary and ternary choices for
the routing decision, which are taken when

CALTECH CONFERENCE ON VLSI, January 1979

the primary choice cannot be followed .
Such a decision table for the case of the
full-ring tree is shown in table l. The
proper field is selected from a comparison of
the horizontal and vertical distances between
current position and target node. Within
each field , first, second and third choice for
the routing out of the current position are
listed .

Of course there are always cases where
this fault tolerant routing algorithm cannot
be successful - for instance when the target
node itself is missing. Special means to
safeguard against cluttering the tree with
worthless messages are thus required . One
possible solution is to accompany each mes
sage header with a byte that counts the
number of detours experienced, i.e. how
often the message could not be routed in
the primary direction. When this count
reaches a limit, preset by the operating sys
tem , a higher level recovery mechanism is
invoked. For instance, the message could
then be purged and a notice of this fact
could be returned to the originator.

7. SYSTEM EXPANSIBILITY
In X -TREE all input or output and secon

dary memory is at the frontiers of the tree.
Thus, every time a node is added to the
tree, a terminal or a storage device has to
move and thereby changes its node address.
A mechanism is necessary to route messages
automatically to that node even though the
message header may still carry an outdated
node address. With the following conven
tions this can be achieved. Messages for
leaf nodes are identified as such. Each node
knows whether it is a leaf node or not.
Messages destined for leaf nodes are routed
downwards from their specified target node
address along the chain of left children until
they reach an actual leaf node. This scheme
works, if during the expansion of the tree
existing leaf attachments are moved to the
left child position, of the newly attached
node, and the right child position is used to
attach new equipment (Fig.5).

ARCHITECTURE SESSION

before expo ns ion

offer expansion

Figure 5. Principle of incremental expansion of x.
TREE, which permits messages to find the proper leaf
node.

8. MESSAGES

If X-TREE lives up to its potential of
substantial parallel computing, many mes
sages will travel simultaneously through the
tree, and many messages may want to use
the same link between two nodes. In order
not to stall one message until another mes
sage has been transmitted completely, mes
sages are time multiplexed on the links on a
demand bases. For this purpose each mes
sage header carries a unique identifier called
a ''slot address", so that the various parts
belonging to different messages can be
sorted out again at the receiving node. In
each node all incoming messages are
assigned such a "slot address", which is valid
within that node and on the subsequent link.
A specific slot address precedes any part of a
message transmitted over a particular link.

Single-Chip Computers
the New VLSI Building Blocks

Bytes Explanation

SA I new Slot address (SA) of type "new•

Tar~et NA together with target node address (NA).
which ma)' e>tend O\cr several bytes.

NA cont. sets up a new message channel through the tree.

Uato Heginning of first submessaae.

Data

: llere. one or several other messaaes
: may be interspersed on the same link.

SA I old Slot address of type "old' identifies
continuatoon of a previous messaae.

Data
Dat a m~y conso<t of one or more submessaaes

Data "hich m.oy be ondovidually checked
and acknowlec.Jg~d to the ongonator.

Data

: Here , one or several other mes.sa&cs
: may be imerspersed on the same hnk.

SA I old Previous messa~;e continues.

Data End of la$t submessage in this channel.
m• y include ere che~k remainder

Data and end or transmi»ion character.

SA I end Tear ·down slot •ddress
removes message channel.

Table 2. Message format.

For the purpose of creating and removing
message paths, there are different types of
slot addresses. With the header of a new
message, which carries the target address, a
slot address of type "new" is transmitted, to
establish a path throughout the tree to the
proper destination. All subsequent bytes are
considered to be part of the message content
and are thus not involved in the routing
process. If a message has to be interrupted,
then subsequent parts of that message will
be identified with the same slot address as
before, but of type "old" to indicate that this
is a continuation of a previous message.
Active transmission is terminated by the ori
ginator by sending a slot address of type
"end", which removes the established mes
sage channel. These conventions result in
the message format shown in Table 2.

9. X-NODE ARCHITECTURE

At a first glance, each X.NoDE ts simply
a computer that communicates with 4 or 5
nearest neighbors. However because of the
bandwidth requirements discussed above,
normal microprocessor input/output tech
niques are inadequate. It is important that
the processor is not involved in the menial
task of routing messages through X-rRu.
Computation must occur in parallel with
communication. Thus each X-NODE contains
a self controlled switching network with its
own 1/0 buffers and controllers. In the sim
plest version of X -NODE, the actual processor
is attached to this network in the same
manner as the links to the nearest neighbors
(Fig.6). This permits an easy separation of
the development of the communications
hardware and of an advanced X -NODE com
puter.

10. SWITCHING HARDWARE

The heart of this switching network is
a time multiplexed bus. Since this bus is
anticipated to be completely contained
within one chip, its associated parasitic capa
citances will be rather low, and the resulting
bandwidth for a given amount of drive
power will thus be about an order of magni
tude higher than that through the package
pins associated with the input I output ports.
This bus can thus conveniently serve the
attached six to eight ports at their full capa
city (Fig.6).

Each port consists of a set of input and
output buffers and the necessary finite state
machines to control them. Arriving slot
addresses, which precede every separate part
of a message and are identified by a special
tag, switch the input multiplexer to the
proper fifo buffer for that particular message
(Fig. 7). The internal communications bus
consists of a data bus and an address bus
carrying port numbers as well as slot
addresses. The combined bus is allocated in
a fixed round-robin manner to all attached
input ports, which in turn can transmit one
byte to a particular output port or to the
routing controller.

441

CALTECH CONFERENCE ON VLSI, January 1979

442 car.Lo .ti. ;::; equ1n

Data bus

Processor

Flaure 6. Block diagram of X-NODE, showing the X-NODE processor and the switching network consisting of intra-node
bus, routing controUer and input/output buffers to the communication links.

Slot addresses of type "new" cause the
message header to be sent to the routing
controller. There the proper output port is
determined from the routing algorithm and
a suitable slot address will be assigned to
this newly to be established message chan
nel. This information is returned to the port
of entry where it is written into a look-up
table (Fig. 7) . From then on, the intra-node
communication for this channel can be han
dled directly by the input port.

Each output port monitors the intra
node bus. If it finds its own port number on
the address bus, it will pick up a slot address
and the corresponding data byte and enter
the later in the proper fifo output buffer
(Fig.8) . Simultaneously, the finite state
machine at the output end selects a channel
with valid data for transmission over the
link. The data bytes are preceded by the
transmission of the corresponding slot
address.

11. X -NODE MEMORY

Memory contained within each X -NODE

is not part of the global address space. It
acts only as a cache to the secondary
memory contained entirely at the leaves of
X -TREE. To alleviate the paging overhead,
this memory should be as large as possible
and thus the densest storage technique
should be employed. For the mid 1980's it
is anticipated that about 64k bytes could be
implemented together with the X -NODE pro
cessor on the same chip if dynamic RAM or
charge coupled devices are used. The con
tents of this local main memory can be data,
program or microcode, and they will thus be
used by different functional blocks. Unfor
tunately, typical high-density memory can
not easily be implemented as a true mul
tiport memory, and thus it is not possible to
extract three words from different locations
simultaneously. Severe contentions for the
memory bus can thus be expected.

ARCHITECTURE SESSION

Sing l e -Chip Comput e r s,
the New VLSI Building Block s

Flgure 7. Blockdiagram of input port.

To alleviate this problem, we have
decided to build an on-chip memory hierar
chy consisting of a high-density RAM and
three high-speed static caches dedicated to
data, instructions and microcode, and there
fore closely tied in with the ALU, the
instruction decoder and the microcontroller,
respectively. Contentions for the common
data path between the main memory and the
three caches can be minimized by proper
choice of the cache parameters. This
approach combines the storage density
advantage of dynamic RAM with the higher
speed of static caches and yields a lot of
flexibility in the allocation of local main
memory space to data, programs or micro
code.

Swapping of microcode occurs through
the same mechanisms as paging of programs
or data from secondary memory at the fron
tier of X -TREE. No special mechanism has to
be invoked to change the instruction set of
one of the X -NODES, and the latter can thus
be tailored dynamically to best solve the
current computational problem.

Figure 8. Blockdiagram of output port.

12. OTHER ARCHITECTURAL
FEATURES

There are other architectural features
which indirectly relate to the communication
between processors. Issues of timing, syn
chronization, data sharing and protection are
all crucial in multiprocessor, multi-user sys
tems. The architecture of future chips
should thus lend ample support to those
features. Specifically, the concepts of
processes [Dijkstra 68, Wirth 1971, Brinch
Hansen 1972, 1975] and modules [Wirth
1977] are important for a clean and struc
tured approach to parallel computing. In X.
TREE we plan to give strong support to the
mechanisms that create, terminate or move
processes throughout the system [Patterson
er a/. 1979]. A vital part in this context is a
mechanism that permits fast process switch
ing without the explicit need to save many
special registers. Again the cache based
architecture provides a fast, automatic and
transparent mechanism for the replacement
of the active parts of the memory contents
when a process environment is changed. A

4 4 3

CALTECH CONFERENCE ON VLSI, January 1979

444

small operating systems kernel based on the
language Modula [Wirth 1977] is currently
being developed and will be used in future
extensive studies of the operating issues.

It goes almost without saying, that the
customers of the next decade will expect
st rong support for high level language con
structs, data structures, bounds checking
and any thing that may help to slow down
the increase of the gap between software
and hardware costs.

13. SUMMARY

In summary, there will always be a
demand for off-the-shelf, general-purpose
components, which can be used as truly
modular building blocks for the construction
of computing systems of any size. One such
component has been identified and one way
to organize that component into an incre
mentally expansible computing system has
been outlined. Two crucial issues in the
design of such a system are interprocessor
communication and the operating system.
Both issues must be addressed at an early
stage of the design so that the necessary
hardware support can be provided.

ARCHITECTURE SESSION

Carlo H. Sequin

We felt that the issue of interprocessor
communication is even more important at
an early stage of a VLSI multiprocessor pro
ject. The emergence of truly modular, gen
eral purpose VLSI components may actually
depend on the design of a standard inter
processor communication protocoll and a
realization of the required switching
hardware on VLSI chips.

14. ACKNOWLEDGMENTS

The author would like to point out that
project X-TREE is a "tightly coupled" team
effort of our Architecture Group in the
Computer Science Division at Berkeley ,
including Profs. Despain and Patterson, and
several graduate students, and that it is
almost impossible to determine the specific
contributions of each member of the team.
Particular thanks go to AI Despain and Dave
Patterson for their suggestions, comments
and careful review of this manuscript.

This study was sponsored in part by
the Joint Services Electronics Program, Con
tract F44620-76-C-0100.

Single-Chip Computers,
the New VLSI Building Blocks

REFERENCES
Bell,C.G. and Newell,A. (1971):

in Computer Structures: Readings and Examples, McGraw-Hill 1971 , Chapter 2.

Bell,C.G., Chen,R.C., Fuller,S.H., Grason,J., Rege,S. and Siewiorek,D.P. (1973):
"The Architecture and Applications of Computer Modules: A Set of Components for
Digital Design", IEEE Compean, March 1973, Conf. Proc. pp 177-180.

Brinch Hansen,P. (1972):
"Structured Multiprogramming" , Comm. ACM 15, No 7, July 1972, pp 574-578.

Brinch Hansen,P. (1975) :
"The programming language Concurrent Pascal", IEEE Trans. Software Eng. 1, No 2,
1975, pp 199-207.

Despain,A.M. and Patterson,D.A. (1978a):
"X-Tree: A Tree Structured Multiprocessor Computer Architecture", 5rh Symp. on
Comp. Arch., Palo Alto, CA, April 3-5, 1978, Conf. Proc. pp 144-151.

Despain,A.M. and Patterson,D.A. 0978b):
"The Computer as a Component: Powerful Computer Systems from Monolithic
Microprocessors" , submitted to Comm. of ACM.

Dijkstra,E.W. (1968):
"Co-operating sequential processes", in Programming Languages, ed. F. Genuys,
Academic Press, London, 1968.

Haendler,W., Hofman,U. and Schneider,H.J. (1976):
"A General Purpose Array with a Broad Spectrum of Applications" , in Compurer archi
tecture workshop of the Gesellschaft fuer lnformarik Erlangen, May 1975, Informatik
Fachberichte, Springer, Berlin, 1976.

Patterson,D.A., Fehr,E.S. and Sequin, C. H. (1979):
"Design Considerations for the VLSI Processor of X . TREE", submitted to the 6th
Annual Symposium on Computer Architecture, Philadelphia, April 1979.

Sequin,C.H., Despain,A.M. and Patterson ,D.A. 0978):
"Communication in X .TREE, a Modular Multiprocessor System", ACM 78, Washington
D.C., Dec.4, 1978, Proc. pp 194-203.

Wirth ,N. (1971):
"The programming language Pascal" , Acta InformaTica I, 1971, pp 35-63.

Wirth,N. (1977):
"Modula: A language for modular multiprogramming", Software - Pracrice and Experi
ence 7, No 1, 1977, pp 3-35.

445

CALTECH CONFERENCE ON VLSI, January 1979

