
Bristle Blocks: 

A Silicon Compiler 

Dave Johannsen 

Cal tech 

Abstract 

303 

Standard LSI Design Automation systems are database management systems that aid the circuit 

designer by organizing Lhe collection of submodules LhaL comprise a chip. This Lype of file sysLem 

usually does noL aid in the acLUa/ computation of silicon layouL. and can hinder a designer with 

program constraints that have lillie or nothing to do with silicon constraints. The Bristle Block system 

is an auempt Lo create a silicon compiler that will perfonn the majority of the implementation 

computation while placing a minimum set of conslraints on the designer. The goal of the Bristle 

Rlock system is to produce an entire LSI mask set from a single page, high level description of the 

integrated circuiL 

Introduction 

After designing a few reasonable sized LSI integrated circuits, it becomes painfully obvious that the 

current design tools aid little in the every increasing task of automating chip design. Most systems 
are little more than fancy filing cabinets that help organize the data associated with various clements 

composing a chip. Even with these advanced systems. 90% of the design is completed in 10% of tne 
time, while the remaining 10% of the design requires the remaining 90% of the time. Too many 

design decisions are "frozen in concrete" early in the game, before the effects of those decisions 

become apparent 

What if a person were able to sit down and design a complete chip in a single afternoon? The user 

would grab a few building blocks, snap them together, and experiment with many radically differing 
designs before deciding upon the actual implementation. What if that person were given complete 

mask layou~ and simulations for each of his or her experimental configurations with almost no 

effort? This is the environment that the Bristle Blocks system attempts to provide. 

CALTECH CONFERENCE ON VLSI, January 1979 



304 Dave Johan :1ser.. 

Design Goals 

The goal of the Bristle Block system is to allow the user to design LSI integrated circuits with as 

little concern for the mechanics involved as possible. The system must be capable of designing 

fairly complicated chips. and the resulting designs should have a high degree of optimization in the 

layout. The results should be competitive with "hand layout" chips. 

Structured Design. The Bristle Block system is intimately dependant on the structured design 

methodology, as presented in Mead and Conway [1]. This system encourages the design of regular 

computing structures. These regular computing structu res tend not to limit the power or usefulness 

of the resulting machines. but rather to enhance the performance and generality of the hardware. 

Hierarchical Design. The chips designed by Bristle Blocks arc hierarchical in nature. This 

hierarchy imposes a locality on the various sections of the chip that can be exploited when 

performing design rule verifications and electrical simulations of tl1c chip. 

Various Representations. The Bristle Dtock system provides various representations for the 

integrated circuit. The representations span the entire range from the physical to the conceptual 

aspects of the chip. Bristle Blocks is designed to handle the following seven representations: 

LA YOur. The "lowest" level of representation is the Layout level, which produces the actual 

chip masks. 

STICKS. The Sticks level produces a stick diagram of the chip, which has the same topology 

as the layout, but with all of the ·features reduced to single-width lines. The resulting 

diagram is much easier to comprehend than the full layout. diagram. 

TRANSISTORS. The Transistor level produces a transistor diagram for the chip or subsection 

of the chip. 

loGIC. The Logic level of the chip can produce a logic diagram of the chip in the TTL 

style. 

TExT. The Text level prints a . hierarchical description of the chip that can be used as a 

"user's manual" for the completed chip. 

SIMULATION. The Simulation level can be used to logically simulate the chip, so that 

software can be written for the chip to explore the fcasability of the design. 

BLOCK. The Block level draws a block diagram of the chip, showing the arrangement of the 

buses and core elements. 

COMPUTER-AIDED DESIGN SESSION 



Bristle Blocks: a Silicon Compiler 305 

Every fundamental clement in the Bristle Block system has the capability of containing each of 

these seven representations for itself. When the system is physically conn~cting the clements, the 

logical and textual Jinks are also generated. Other representations may be added to lhe system at 

any time. 

Bristles · and Blocks 

The fundamental unit in the Bristle Block system is the cell, which may contain geometrical 

primitives and references to other cells. These cells to the LSI designer can be equated to the 

programmer's subroutines: each contain a few primative operations and references to lower levels 

in the hierarchy. The geometric primativcs arc instances of lines, boxes. and polygons, each with an 

associated mask layer. 

Bristle Blocks also has a structure for specifying the location and flavor of connection points 

between cells. These connection points are like bristles along the edges of the cells, and it is upon 

these bristles that the Bristle Block system builds most of the computable structures. · Connection 

points help keep local data local and global data global. while delaying the binding of many design 

constraints. For instance, a cell that requires an input from a pad would contain a connection point 

stating where in the cell the pad should connect and what type of pad is needed. When the chip is 

compiled, the appropriate pad is automatically placed on the chip and a wire is routed between the 

pad and the cell. Thus. the local data, which declare where in the cell the pad connects and the 

type of pad, is kept local to the cell, while the global data, which specify where the pad is located 

and how the wire is routed, is kept global to the cell. Also, none of the data need be supplied by 

the user at compile time. 

The data necessary to specify the various representations for the cells and connection points may be 

stored in disk files and read in as needed, to allow for the use of common cell libraries and sharing 

of data. Any low level cell that the user may need for his chip must be entered into either the 

system or a library before the chip can be compiled. Associated wtth each cell is the information 

necessary to extract the cell's definition from a file, if such a file exists. 

The low level cells in a library are defined by entering the actual layout of each cell representation 

in a standard cell design language. The low level cell design task was not given to the compiler, but 

left to the user, for three reasons: 

1) The design of low level cells docs not take much time. Each cell usually has a small 

area, few transistors, and is reasonably well defined. 

2) Very few mistakes are made in the design of low level cells. Experience has shown that 

virtually none of the fatal chip errors occur in the low level cells, but that chips fail because 

of faulty "glue": the high level cells holding the chip together. 

CALTECH CONFERENCE ON VLSI, January 1979 



306 Dave J o ha nnsen 

3) Human ingenuity pays off well in the low level cell design. There has yet to be written 

a computer program that approaches human ingenuity in cell design, which is most 

noticable in the low level cells. 

Otip Fonnat 

As a starting point. one style of chip design was selected to explore the possibilities of a Bristle 

Block system. Although it was initially felt that this style would be rigid and special purpose, the 

generality of the style became apparent as the potentials of Bristle Blocks were discovered. The 

style of chip design is stated in the description of three forrn~ts of the chips: the physical, logical, 

and temporal formats. 

Physical Format. The physical format of chips built by the 

current Bristle Dlock system is shown in figure 1. A chip 

consists of a central core which is controlled by an 

instruction decoder, both of which arc surrounded by pads. 

The core is composed of a series of data processing 

elements, such as memories, shifters, and arithmetic-logic 

units. Based upon the requirements of the core, the 

instruction decoder and pads are automatically generated 

and placed in the final chip. 

Core 

Decoder 

Pads 

I 

! 

t t 

Upper Bus 

I ! 

Core Elements 

! 1 
Lower Bus 

Control Signals 

! 

! 

t t t t t t 
t 

Microcode 

Figure 2. Logic~l Chip Format 

COMPUTER-AIDED DESIGN SESSION 

Figure 1. Physical Chip Format 

Logical Format. The logical format of the chips is 

shown in figure 2. Each of the core elements can 

communicate with either of two buses that run 

through the elements. These buses may run the 

length of the chip, or they may stop anywhere 

along the chip with new buses servicing the 

remainder of the chip. The order of placement of 

elements along the core is irrelevant to the system, 

with the exception that at most two buses may run 

through any clement. The microcode words which 

control the operation of the chip enter the decoder 

twice during each clock cycle. The appropriate 

control functions are derived from these microcode 

words and latched by control signal buffers. These 

buffers then drive the control lines of each core 

element. 



Brist l e Block s : a S i l i co n Comp i l e r 307 

Temporal Format. The chip is driven by a two phase, non-overlapping clock. One phase. refered 

to as q:~l, controls the transfer of data between elements via the buses. The alternate clock phase, 

refered to as q:~2, controls the operation of the data processing clements. During q:~2, the buses are 

prechargcd to a high state. Any processing element that is activated during q:~l may pull the bus 

lines low. Any clement may read the data from the bus by the end of q:~l. While the buses are 

transfcring data, the data processing elements may be precharged. An example of a prccharging 

pocessing clement is an adder, where the carry chain is prcchargcd to a high state. During the 

following q:~2. the various points along the carry chain may be pulled to a low state. Instructions 

enter the control buffers through the decoder logic on the clock phase prccccding the phase when 

the instruction is to be executed. 

Operation 

Bristle Blocks is a three pass compiler, consisting of a core pass. a control pass, and a pad pass. The 

core pass takes both the user's input and low level cell definitions to construct the core of the 

machine. The control pass adds the instruction decoder to the core by generating a decoder which 

fills the constraints posed by control connection points in the core. The pad pass adds the pads to 

the perimeter· of the chip and routes wires between the pads and the corresponding connection 

points in the core and decoder. 

User Input 

The input to the compiler consists of three sections. The first section states the microcode 

instruction width and describes the decomposition of the microcode word into various fields, such as 

the "Register Select Field" or the "ALU Operation 1-leld." The second section states the data word 

width for the chip and lists the buses th·at run through the core of the chip. The final section lists 

the clements of the chip's core. and provides any parameter values that the elements require. 

Pass 1: Core Layout 

The core pass is driven by the user's input The input contains the list of clements and associated 

parameters. After all of the elements vote on the values of global parameters, each element is 

executed in turn, resulting in a heirarchy of cells which implement the core of the chip. 

To allow any two elcments to plug together, cells must interface either by maintaining a common 

pitch (width) or by wire routing. To save the space and costly routing needed if cell widths vary, a 

design constraint states that all cells must be of equal width. To have a uniform width for all cells, 

every cell must be designed as wide as the widest cell. The width of the widest cell is not known 

until after all of the cells are designed! And as future cells are designed, they must either be forced 

to have the same width as current cells, or else all of the cells must be redesigned to accomidate the 

wider cells. 

CALTECH CONFERENCE ON VLSI, January 1979 



308 Dave Johannsen 

By introducing stretchable cells. this problem can be avoided. Each of the cells arc designed with 

places to stretch. As the core is being scanned, each clement reports the width of its cells, so that 

when the end of the core list is reached, the widest cell width is known. As the elements produce 

their cells, each cell is stretched (a painless operation) to fit all other cells. The cells can also be 

stretched to allow the power lines to expand as power demands increase. 

Another restriction arising from the arbitrary element ordering is that each of the cells must meet 

certain interface requirements. Proper interface standards eliminate intercell problems such as 

shorting out a neighbor's transitor or power supply line. lly agreeing on a standard interface to 

begin with, any cell can be guaranteed to mesh properly with adjacent cells before the neighboring 

cells are specified. lloundry conditions like these allow design rule checking to be performed on 

individual cells as the cells arc designed. rather than on fully instantiated artwork. 

Along with meshing of cells, the busing requirements between cells must also be met. Buses may 

need to break or stop, and bus prechargc circuits must be added for each bus. Details like these 

need not be specified by the user, but are added by the compiler. 

Pass 2: Control Design 

Given the results of the core pass, the control design and layout proceeds. First, control buffers to 

drive the control lines arc inserted along the edge of the core. The timing is also added to the 

control signals by the buffers. Theil, an text array is constructed which specifics the decode 

functions needed for each butTer. A two-tape Turing machine operates on one "tape", . which 

contains the text array, and writes the second "tape", producing compiled silicon code. When it has 

finished operating on the array, the Turing machine will have generated and optimized the 

instruction decoder, and created pad connections for the inputs to the decoder. 

Pass 3: Pad Layout 

The pad layout pass of the silicon compiler begins by collecting all of the connection points which 

need to be connected to pads. These connection points are sorting in clockwise order, and .pads are 

allocated in the same order. The pads and connection points arc examined by a Rota-Router, 

which rotates the pads around the perimeter of the chip in an attempt to minimize the length of 

wire between pads and connection points. The Roto-Router spaces the pads evenly around the chip 

to avoid generating pad layouts that would be difficult to bond. The third pass concludes by 

adding wires between the pads and the connection points. 

Conditional Assembly 

Bristle Blocks can allow for conditional assembly of silicon. For example, when designing prototype 

chips, the internal s_tate of a state machine may need to be routed to pads, but when production 

chips are produced, the area of the pad and wires may need to be reclaimed. The user may dcciarc 

COMPUTER-AIDED DESIGN SESSION 



Bris tl e Bloc ks: a Silicon Compil e r 309 

a global boolean variable PROTOTYPE. which, if TRUE, will add the connection points for the pads. 

but if F Al.SE will not At any time prior to actually compiling the chip, the user may decide 

whether this is a prototype chip or not, and properly modify the layout 

Since Bristle Blocks provides a high level programming language to the user, cells can be smart, and 

perform calculations as they arc being added to the core. As an example, there may be several 

possible cell layouts which implement the desired function. After the cell width has been 

determined. the possible layouts which fit within the specified width can be judged to find the cell 

with minimum resulting area. The minimum area cell is then used in the actual chip, which 

optimizes the length of the chip. 

Implementation 

Bristle Blocks is implemented in ICL, a high level graphics, integrated cir
cuit design, and general purpose programming language created by Ron Ayres(2). 
ICL allows the user to generate new data structures at any time. Functions 
and coercion can also be added to manipulate the data structures. The coer
cions are invoked automatically by ICL when the data it receives are not of 
the type it expects . Also, ICL provides for polymorphic functions, where the 
operation performed by the function is dependent upon the data supplied to 
the function . ICL is an extensible language, so that any user defined functions, 
datatypes, and coercion become a part of the current version of ICL. This 
also means that the Bristle Block system provides the user with all of the 
basic ICL operations, and that Bristle Blocks is an extensible s ystem • . 

The only disadvantage with using ICL is that the current version is an implementation for a 

PDP10/PDP20, which has a small (18 bit) address space. 

Conclusion 

In the 21h man-months that have gone into developing the first Bristle Blocks system, approximately 

80% of the system has been implemented. Given a high level description of the chip and 

definitions for core elements. the system produces a complete layout, sticks diagram, transistor 

diagram, logic diagram, and block diagram. There are a few special cases in the circuit topology 

that have still to be considered, but lack· of time is the only reason they have not been implemented. 

Hooks for the circuit simulator and text producing code have been included in the system, but with 

the constraint that all code must remain in core, these features must wait 

The chips produced by the system arc fairly well optimized. having ±10% of the area of a chip 

produced by hand using the structured design methodology. The compiler takes approximately 4 

minutes to generate a small chip, in all five of the current representations. 'The time needed to 

generate a fairly large chip should be in the neighborhood of 1o-15 minutes. 

CALTECH CONFERENCE ON VLSI, Janua r y 19 79 



310 

At present, the Bristle Blocks system is tailored to produce 

chips of a particular architecture. As the domain of silicon 

compilers is examin_ed through the use of the current Bristl~ 

Blocks, a more general chip architecture will be found that 

encompasses the current chip architecture. A more 

generalized Bristle Blocks wi11 be developed to compile the 

generalized chip architecture. The generalization of the 

current Bristle ntock system may continue through a 

number of generations. At some point, however, a totally 

new Bristle Dlocks will be generated to handle a completely 

different style of chip. Thus, there wi11 emerge several 

classes of Bristle Dlock systems, each compiiing a separate 

class of chip architectures, rather than one Super Bristle 

Block system which attempts to produce all chips. 

Dave Johanns e n 

\ 

Current System 

Figure 3. Hierarchy of Systems 

References 

[1) Mead, Carver A., and Conway, Lynn "An Introduction to VLSI Systems," limited printing, 

1978 

[2] Ayres, Ronald, "ICL Reference Manual," SSP File # 1364, CalTech, 1978 

COMPUTER-AIDED DESIGN SESSION 


