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Abstract If a VLSI computer architecture is to influence the field 
of computing in some major way, it must have attractive properties 
in all important aspects affecting the design, production, and the 
use of the resulting computers . A computer architecture that is 
believed to have such properties is briefly discussed. 

I . Introduction 

One would expect that microelectronics, having affected other 
application areas, should influence the way we design computers , and 
such sentiments have already been articulated in the literature [5] . 
So far, however , all ideas on how to organize a very large number of 
logic circuits (or for that matter, microprocessors) into a comput­
ing machine have had serious drawbacks in one or more respects. As 
a consequence , computer design has not yet been able to exploit suc­
cessfully the ever-increasing capabilities of semiconductor technology . 

In the first part of this paper, we argue that a VLSI computer 
architecture, in order to have a major impact on the computing field , 
(l) should be cellular in design, and (2) should have its design be 
guided by consideration of an appropriate language. The remainder of 
the paper outlines the major characteristics of one computer architec­
ture which has these properties. A detailed description of this 
architecture is being published elsewhere. 

II. Desiderata for VLSI Architectures 

We start this sequence of arguments by acknowledging that for 
the forseeable future, only large production volumes can make it 
economically attractive to manufacture whatever VLSI chips we need 
for our computer designs. From this point of view, all conceivable 
computer designs requiring Q amount of hardware for their realiza­
tion (measured in any meaningful way) can be linearly ordered: at 
one end of the scale one finds designs that require the whole Q 
amount of hardware to be designed into different , one- of- a-kind chips , 
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whereas moving towards the other end one finds designs (we shall call 
them cellular) in which only a fraction , Q/n amount, of the hardware 
has to be designed into chips , and the computer is obtained by taking 
n copies of these chips and interconnecting them in some regular fash­
ion. If one can create sensible computer deisgns that are cellular, 
then, all other things being equal, increasing n will make the situa­
tion more and more attractive by decreasing the number of necessary 
chip designs and increasing production volume of each re~aining chip 
type. 

We infer from the above that a VLSI computer architecture should 
have a cellular structure, that is, it shoUld be obtained by inter­
connecting simple component processors (we shall call them cells ) in 
a regular fashion . (At this stage we can conceive of a cell occupy­
ing more than one chip , or alternatively a chip containing many cells. 
In this latter case, the chips should also be connected in a regular 
fashion.) We shall take cellularity also to imply that in an organ­
izational sense such an architecture should be expansible, and that 
there should be only physical limits to the size of such machines . 

In a cellular computer, the cells are expected to operate con­
currently, carrying out component computations , and the problem of 
designing such a computer is ultimately a problem of algorithm decom­
position : how to prescribe for each cell what to do so that the total­
ity of their behaviors adds up to the required global behavior , such 
as the execution of a particular user program. Since computations in 
a cellular computer must be able to unfold over potentially very lar ge 
collections of cells (thousands or millions of them), often in a data 
dependent manner, it would be most natural for the details of the 
above mentioned decomposition to be worked out at run-time. The 
remaining question is how is the decomposition determined and at 
what cost? 

The inherent nature of a cellular computer--it is expansible , 
and arbitrarily large collections of cells must be able to operate 
efficiently--appears to exclude any reliance on some central , global 
agent, e.g., a "master" computer , that would inspect the user program, 
decompose it, and then determine what each cell should do. The alter­
native to such a global control is to let individual cells cooperate 
in decomposing the user program into parts (small or large ) , carry 
out partial computations, and (still using only limited local infor­
matio~ cooperate in combining the partial results to obtain the 
desired overall result. The more straightforward , direct , and simple 
this process can be made, the more efficient the resulting computer 
can become. In the extreme case, the cellular network can be thought 
of as directly executing an appropriate user language. It appears 
most promising then to require that a VLSI computer architecture 
be language directed, meaning that it be able to execute directly a 
programming language. With this approach, the programming language 
specifies the global behavior the cellular network is to exhibit, 
which in turn can be used to derive the behavioral and structural 
specifications for the individual cells. The above requirement 
really urges an integrated, top-down design for both the software 
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and the hardware of such a cellular computer, in sharp contrast with 
the usual practice of separately designing software and hardware for 
uniprocessors. (It should be mentioned that Dennis [3] and other 
advocates of the data flow approach have also argued for language 
directed architectures in the context of parallel, though not neces­
sarily cellular, computers.) 

In addition to the above considerations , an acceptable computer 
design for VLSI technology must meet many other criteria, such as ease 
of programming, efficient execution of user programs, and cost-effec­
tiveness in an overall sense. In [4], a computer architecture is 
described that seems to meet these criteria. In this paper, we explore 
what a cellular, language directed architecture can offer by examin­
ing how some of these criteria are met by the architecture described 
in [4]. 

III. Main Characteristics and a Brief Evaluation 
of a Cellular , Language Directed Architecture 

The architecture described in [4] is capable of directly execut­
ing certain applicative languages (e.g., reduction languages [1], FP 
and FFP systems [2]) recently introduced by Backus. In these lan­
guages , programs are expressions, and a program is executed by eval­
uating its expression. A particular class of expressions, called 
applications, specifies computations. Because these languages allow 
all innermost applications to be evaluated simultaneously , they are 
able to express parallelism in a very natural fashion. 

The architecture of [4] is obtained by interconnecting cells 
in the form of a full binary tree, and additionally connecting the 
leaf cells into a linear array. The leaf cells (i.e., those in the 
linear array) are all identical and are called L cells. The remain­
ing cells are different from the L cells but identical to each other; 
these are called T cells. The L cells store the expression to be 
evaluated (although they also have some processing capabilities), 
whereas the T cells are used for routing and processing purposes. 
In order to make the cells as small as possible, each L cell is used 
to store a single symbol of the source program. 

A user program and its data form a single expression in these 
languages; this expression is a linear string of symbols, and is 
mapped onto the L array, one symbol per L cell. The innermost (hence 
executable) applications are contained in disjoint segments of the L 
array, and disjoint portions of the T network are used to evaluate 
(i.e., execute) them. Consequently ,·this cellular architecture is 
capable of unbounded parallelism on the source language level by 
simultaneously evaluating all innermost applications, the only limit­
ation being the size of the L array. 
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In addition, there is parallelism below the level of the source 
language: since cells of L hold only single symbols of the source 
language , even the simplest primitive operations of the source lan­
guage, such as adding two numbers, involve the cooper ation of several 
cells of the network . This low-level parallelism makes feasible 
direct implementation of complex primitive oper ations of the language, 
such as vector operations and typical associative processor operations . 

Since the above architecture is unusual, one can evaluate it 
or compare it with other architectures only on the basis of global , 
overall criteria, for ultimately its viability will be judged on 
the basis of such criteria . We consider four main categories of 
properties of the architecture. 

1 . Programmability 

1.1 . The applicative languages on which the architecture is 
based support a functional style of programming . The advantages 
of such a style over that permitted by conventional languages are 
discussed at length by Backus in his 1977 Turing Award Lecture [2] . 

1.2 These languages allow and encourage the introduction of a 
high degree of parallelism into the pr ograms without r equiring 
detailed planning on the part of the pr ogrammer (for example , the 
pr ogrammer does not have to initiate and ter minate execution paths 
explicitly) . 

1 . 3 Execut ion times of programs can often be pr edicted analyt­
ically (see 2. ) . As a result, when a pr ogram is being written , 
efficient execution ~be a criterion , and time- space tradeoffs 
are commonl y available. 

1. 4. The primitive operations of the language are not wired 
into the cells , and consequently the architecture allows great 
flexibility as far as the primitives of the applicative languages 
are concerned , even within a single machine . 

2 . Efficiency of Program Execution 

The processor is designed to be able to execute with accept-
able efficiency any program written in an applicative language . Most 
important in this r espect is that the processor initiates and termin­
ates the execution of all innermost applications (i . e ., execution 
paths) with little or no overhead (beyond the work required by individ­
ual innermost applications), thereby adjusting easily to t he widely 
varying degrees of parallelism found in most programs. 

The execution time of an innermost application can be predicted 
analytically . Some primitive operations require O(logN) time , where N 
is the number of cells in L. More compl ex primitives , such as 
reversing a list of an arbitrary number of elements , require time 
proportional to the number of data items that have to be moved. 
Based on the execution times for primitives , upper and lower bounds 
can be derived for the execution times of pr ograms written in the 
applicative language ; this is especially easy for programs with few 
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data dependent branches. Many important classes of algorithms have 
been and are being analyzed, such as vector and matrix algorithms, 
algorithms for dense and sparse linear systems , Fourier transforms, 
solution methods for partial differential equations, and multidi ­
mensional search problems . Th~se analyses show that not only can the 
machine execute sequential programs in an acceptable manner, but 
also the massive parallelism both on and below the source language 
level can result in greatly increased execution time efficiencies . 
The details of these analyses are to be published elsewhere . 

3. System Software 

Since the cellular network directly responds to an applicative 
language, the need for many typical components of present-day uni­
processor and multiprocessor software has been removed, and their 
function taken over by hardware . For example, in the presently 
envisioned system, there is no need for 

(a) a compiler (there is only need for a very simple 
preprocessor to change the external representation 
of programs to an internal one) , 

(b) a software interpreter, 
(c) memory management software, 
(d) software to detect parallelism in user programs, 
(e) software to assign processors to tasks . 

Since the cost of software is the dominant component in the cost of 
present-day general purpose computers (and not only is it expensive 
to develop such software, but in addition it has to be stored in the 
machine , and it ties down hardware resources while executing ) , the 
possibility of trading complex system software for cellular hardware 
is a very welcome development. 

4. Hardware Related Issues 

Some of the advantages of cellularity have already been discussed 
under the desiderata. 

4.1. Both the L and T cells are rather small, mainly because 
they need only a few dozen registers as local storage. As a result, 
as VLSI technology advances, whole subtrees of cells may be put on 
a single chip. (Any cell of T or L has to be connected to at most 
three other cells in the network. Furthermore , any complete subtree 
whose leaves are L cells communicates with the rest of the processor 
through at most three such points.) 

4.2 Since a collection of user programs is again an expression in 
the applicative language, the cellular processor needs no extra 
machinery to deal with several user programs at a time. As a result, 
increasing the size of the processor can yield arbitrarily large 
throughput values without any need for reprogramming . (In fact, all 
other things being equal, throughput increases at least as fast as 
N/logN, where N is the number of L cells.) 

4.3 Actual throughput values are influenced by many design 
parameters, such as speed of logic circuits and widths of data paths 
but most importantly by the parall.elism present in user programs. 
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For programs that offer high degrees of parallelism, throughput values 
can become very high. As an example, for N=l million L cells, 
5,000 - 10,000 MIPS can realistically be estimated as the highest 
attainable, where an innermost application is counted as an "instruc­
tion;" (Note that if an innermost application involves a complex 
primitive, such as finding the maximum of an arbitrary number of 
data items, what we count as one instruction may be equivalent to 
the computational work performed by many uniprocessor operations . ) 
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