
A CELLULAR , LANGUAGE DIRECTED COMPUTER ARCHITECTURE

(Extended Abstract)

Gyula A. Mag6

University of North Carolina at Chapel Hill

Abstract If a VLSI computer architecture is to influence the field
of computing in some major way, it must have attractive properties
in all important aspects affecting the design, production, and the
use of the resulting computers . A computer architecture that is
believed to have such properties is briefly discussed.

I . Introduction

One would expect that microelectronics, having affected other
application areas, should influence the way we design computers , and
such sentiments have already been articulated in the literature [5] .
So far, however , all ideas on how to organize a very large number of
logic circuits (or for that matter, microprocessors) into a comput­
ing machine have had serious drawbacks in one or more respects. As
a consequence , computer design has not yet been able to exploit suc­
cessfully the ever-increasing capabilities of semiconductor technology .

In the first part of this paper, we argue that a VLSI computer
architecture, in order to have a major impact on the computing field ,
(l) should be cellular in design, and (2) should have its design be
guided by consideration of an appropriate language. The remainder of
the paper outlines the major characteristics of one computer architec­
ture which has these properties. A detailed description of this
architecture is being published elsewhere.

II. Desiderata for VLSI Architectures

We start this sequence of arguments by acknowledging that for
the forseeable future, only large production volumes can make it
economically attractive to manufacture whatever VLSI chips we need
for our computer designs. From this point of view, all conceivable
computer designs requiring Q amount of hardware for their realiza­
tion (measured in any meaningful way) can be linearly ordered: at
one end of the scale one finds designs that require the whole Q
amount of hardware to be designed into different , one- of- a-kind chips ,

447

CALTECH CONFERENCE ON VLSI, January 1979

448 Gyula A.Mag6

whereas moving towards the other end one finds designs (we shall call
them cellular) in which only a fraction , Q/n amount, of the hardware
has to be designed into chips , and the computer is obtained by taking
n copies of these chips and interconnecting them in some regular fash­
ion. If one can create sensible computer deisgns that are cellular,
then, all other things being equal, increasing n will make the situa­
tion more and more attractive by decreasing the number of necessary
chip designs and increasing production volume of each re~aining chip
type.

We infer from the above that a VLSI computer architecture should
have a cellular structure, that is, it shoUld be obtained by inter­
connecting simple component processors (we shall call them cells) in
a regular fashion . (At this stage we can conceive of a cell occupy­
ing more than one chip , or alternatively a chip containing many cells.
In this latter case, the chips should also be connected in a regular
fashion.) We shall take cellularity also to imply that in an organ­
izational sense such an architecture should be expansible, and that
there should be only physical limits to the size of such machines .

In a cellular computer, the cells are expected to operate con­
currently, carrying out component computations , and the problem of
designing such a computer is ultimately a problem of algorithm decom­
position : how to prescribe for each cell what to do so that the total­
ity of their behaviors adds up to the required global behavior , such
as the execution of a particular user program. Since computations in
a cellular computer must be able to unfold over potentially very lar ge
collections of cells (thousands or millions of them), often in a data
dependent manner, it would be most natural for the details of the
above mentioned decomposition to be worked out at run-time. The
remaining question is how is the decomposition determined and at
what cost?

The inherent nature of a cellular computer--it is expansible ,
and arbitrarily large collections of cells must be able to operate
efficiently--appears to exclude any reliance on some central , global
agent, e.g., a "master" computer , that would inspect the user program,
decompose it, and then determine what each cell should do. The alter­
native to such a global control is to let individual cells cooperate
in decomposing the user program into parts (small or large) , carry
out partial computations, and (still using only limited local infor­
matio~ cooperate in combining the partial results to obtain the
desired overall result. The more straightforward , direct , and simple
this process can be made, the more efficient the resulting computer
can become. In the extreme case, the cellular network can be thought
of as directly executing an appropriate user language. It appears
most promising then to require that a VLSI computer architecture
be language directed, meaning that it be able to execute directly a
programming language. With this approach, the programming language
specifies the global behavior the cellular network is to exhibit,
which in turn can be used to derive the behavioral and structural
specifications for the individual cells. The above requirement
really urges an integrated, top-down design for both the software

ARCHITECTURE SESSION

A Cellular, Language Directed
Computer Architecture

and the hardware of such a cellular computer, in sharp contrast with
the usual practice of separately designing software and hardware for
uniprocessors. (It should be mentioned that Dennis [3] and other
advocates of the data flow approach have also argued for language
directed architectures in the context of parallel, though not neces­
sarily cellular, computers.)

In addition to the above considerations , an acceptable computer
design for VLSI technology must meet many other criteria, such as ease
of programming, efficient execution of user programs, and cost-effec­
tiveness in an overall sense. In [4], a computer architecture is
described that seems to meet these criteria. In this paper, we explore
what a cellular, language directed architecture can offer by examin­
ing how some of these criteria are met by the architecture described
in [4].

III. Main Characteristics and a Brief Evaluation
of a Cellular , Language Directed Architecture

The architecture described in [4] is capable of directly execut­
ing certain applicative languages (e.g., reduction languages [1], FP
and FFP systems [2]) recently introduced by Backus. In these lan­
guages , programs are expressions, and a program is executed by eval­
uating its expression. A particular class of expressions, called
applications, specifies computations. Because these languages allow
all innermost applications to be evaluated simultaneously , they are
able to express parallelism in a very natural fashion.

The architecture of [4] is obtained by interconnecting cells
in the form of a full binary tree, and additionally connecting the
leaf cells into a linear array. The leaf cells (i.e., those in the
linear array) are all identical and are called L cells. The remain­
ing cells are different from the L cells but identical to each other;
these are called T cells. The L cells store the expression to be
evaluated (although they also have some processing capabilities),
whereas the T cells are used for routing and processing purposes.
In order to make the cells as small as possible, each L cell is used
to store a single symbol of the source program.

A user program and its data form a single expression in these
languages; this expression is a linear string of symbols, and is
mapped onto the L array, one symbol per L cell. The innermost (hence
executable) applications are contained in disjoint segments of the L
array, and disjoint portions of the T network are used to evaluate
(i.e., execute) them. Consequently ,·this cellular architecture is
capable of unbounded parallelism on the source language level by
simultaneously evaluating all innermost applications, the only limit­
ation being the size of the L array.

449

CALTECH CONFERENCE ON VLSI, January 1979

450 Gyula A.Mag6

In addition, there is parallelism below the level of the source
language: since cells of L hold only single symbols of the source
language , even the simplest primitive operations of the source lan­
guage, such as adding two numbers, involve the cooper ation of several
cells of the network . This low-level parallelism makes feasible
direct implementation of complex primitive oper ations of the language,
such as vector operations and typical associative processor operations .

Since the above architecture is unusual, one can evaluate it
or compare it with other architectures only on the basis of global ,
overall criteria, for ultimately its viability will be judged on
the basis of such criteria . We consider four main categories of
properties of the architecture.

1 . Programmability

1.1 . The applicative languages on which the architecture is
based support a functional style of programming . The advantages
of such a style over that permitted by conventional languages are
discussed at length by Backus in his 1977 Turing Award Lecture [2] .

1.2 These languages allow and encourage the introduction of a
high degree of parallelism into the pr ograms without r equiring
detailed planning on the part of the pr ogrammer (for example , the
pr ogrammer does not have to initiate and ter minate execution paths
explicitly) .

1 . 3 Execut ion times of programs can often be pr edicted analyt­
ically (see 2.) . As a result, when a pr ogram is being written ,
efficient execution ~be a criterion , and time- space tradeoffs
are commonl y available.

1. 4. The primitive operations of the language are not wired
into the cells , and consequently the architecture allows great
flexibility as far as the primitives of the applicative languages
are concerned , even within a single machine .

2 . Efficiency of Program Execution

The processor is designed to be able to execute with accept-
able efficiency any program written in an applicative language . Most
important in this r espect is that the processor initiates and termin­
ates the execution of all innermost applications (i . e ., execution
paths) with little or no overhead (beyond the work required by individ­
ual innermost applications), thereby adjusting easily to t he widely
varying degrees of parallelism found in most programs.

The execution time of an innermost application can be predicted
analytically . Some primitive operations require O(logN) time , where N
is the number of cells in L. More compl ex primitives , such as
reversing a list of an arbitrary number of elements , require time
proportional to the number of data items that have to be moved.
Based on the execution times for primitives , upper and lower bounds
can be derived for the execution times of pr ograms written in the
applicative language ; this is especially easy for programs with few

ARCHITECTURE SESSION

A Cellular, Language Directed
Computer Architecture

data dependent branches. Many important classes of algorithms have
been and are being analyzed, such as vector and matrix algorithms,
algorithms for dense and sparse linear systems , Fourier transforms,
solution methods for partial differential equations, and multidi ­
mensional search problems . Th~se analyses show that not only can the
machine execute sequential programs in an acceptable manner, but
also the massive parallelism both on and below the source language
level can result in greatly increased execution time efficiencies .
The details of these analyses are to be published elsewhere .

3. System Software

Since the cellular network directly responds to an applicative
language, the need for many typical components of present-day uni­
processor and multiprocessor software has been removed, and their
function taken over by hardware . For example, in the presently
envisioned system, there is no need for

(a) a compiler (there is only need for a very simple
preprocessor to change the external representation
of programs to an internal one) ,

(b) a software interpreter,
(c) memory management software,
(d) software to detect parallelism in user programs,
(e) software to assign processors to tasks .

Since the cost of software is the dominant component in the cost of
present-day general purpose computers (and not only is it expensive
to develop such software, but in addition it has to be stored in the
machine , and it ties down hardware resources while executing) , the
possibility of trading complex system software for cellular hardware
is a very welcome development.

4. Hardware Related Issues

Some of the advantages of cellularity have already been discussed
under the desiderata.

4.1. Both the L and T cells are rather small, mainly because
they need only a few dozen registers as local storage. As a result,
as VLSI technology advances, whole subtrees of cells may be put on
a single chip. (Any cell of T or L has to be connected to at most
three other cells in the network. Furthermore , any complete subtree
whose leaves are L cells communicates with the rest of the processor
through at most three such points.)

4.2 Since a collection of user programs is again an expression in
the applicative language, the cellular processor needs no extra
machinery to deal with several user programs at a time. As a result,
increasing the size of the processor can yield arbitrarily large
throughput values without any need for reprogramming . (In fact, all
other things being equal, throughput increases at least as fast as
N/logN, where N is the number of L cells.)

4.3 Actual throughput values are influenced by many design
parameters, such as speed of logic circuits and widths of data paths
but most importantly by the parall.elism present in user programs.

CALTECH CONFERENCE ON VLSI, January 1979

Gyula A.Mag6

For programs that offer high degrees of parallelism, throughput values
can become very high. As an example, for N=l million L cells,
5,000 - 10,000 MIPS can realistically be estimated as the highest
attainable, where an innermost application is counted as an "instruc­
tion;" (Note that if an innermost application involves a complex
primitive, such as finding the maximum of an arbitrary number of
data items, what we count as one instruction may be equivalent to
the computational work performed by many uniprocessor operations .)

References

[1] J. Backus, Programming Language Semantics and Closed Applica-
tive Languages. IBM Research Report RJ1245, Yorktown Heights , N.Y.
July 1973.

[2] J. Backus, " Can Programming Be Liberated from the von Neumann
Style? A Functional Style and Its Algebra of Programs,"
Communications of the ACM, Vol . 21 , No. 8, August 1978,
pp. 613-641.

[3] J. B. Dennis, "Programming Generality, Parallelism and Computer
Architecture," Information Processing 68, North-Holland
Publishing Co., 1969, pp. 484-492.

[4] G. A. Mag6~ "A Network of Microprocessors to Execute Reduction
Languages,' International Journal of Computer and Information
Sciences (to appear)

[5] I. E. Sutherland and C. A. Mead, "Microelectronics and Computer
Science," Scientific American, Vol. 237, No . 3, September 1977,
pp . 210-228 .

ARCHITECTURE SESSION

