
.. ADL : AN HIERARCHICAL LOGIC DESIGN LANGUAGE

Hilary J. Kahn, A. K. Burston and D. J. Kinniment
Department of Computer Science

University of Manchester
U.K .

1. INTRODUCTION

327

The use of Computer Aided Design techniques in the design of computer
systems themselves is already well established, as can be observed from the
widespread use of programs for the layout of PCBs and IC masks, automated
production of design documentation and the use of automated manufacturing
techniques [1]. Simulation, particularly digital component level simula
tion, has also proved an extremely useful tool in the development of com
puter systems [2]. The most successful of the CAD tools available have,
inevitably, been at the lower (i.e. manufacturing) end of the design pro
cess where the problems are well understood and amenable to algorithmic
solution . In the important area of test pattern generation and at the
higher levels of the design process, the tools available have proved de
pressingly inadequate.

The Department of Computer Science, University of Manchester, has, for
a number of years , specialised in the design of large, fast, computer sys
tems, e.g. Atlas [3] and MUS [4),and has considerable experience of the
practical difficulties in large system design, manufacture and maintenance.
Following the successful use of CAD techniqves in the design of MUS, a more
comprehensive design system is currently under development. The main em
phasis in the design of the CAD tools has been the provision of practical,
usable (and hence used) tools r a ther than a more generalised system. It is
felt that greater generality would require more time, manpower and computer
resources than are readily available, and might still prove unsatisfactory
in solving the real problems faced by the hardware engineer .

This CAD system is centred on a formal Data Base Management System,MUD
[S, 6) with non-programmer access via a flexible Command Processor [7). The
a im is to provide

- a hi gh level hardware design language (ADL) translatable by machine
i nto logic;

- a s ystem level simulator associated with ADL;
- a lower level design language allowing 'hand-designed' logic to be

incorporated;
- a gate level logic simulator which uses component models developed

in a specialised logic description language ;
- layout systems;
- documentation aids including a logic diagram package.

Part of the system is already in operation; much of the r est is currently
under development .

CALTECH CONFERENCE ON VLSI, January 1979

328 H.J.Kahn, A.K.Bursto n, D.J.Kinniment

1.1. Constraints on ADL

The main requirement of ADL (A Design Language!) is that it should be •
capable of describing large, fast,-asynchronous systems in which a high
degree of parallelism is inevitably present. At the same time, a hardware
engineer using ADL would expect the system to automatically generate logic
which used the highest speed technology readily available. The logic gen
erated should, of course, be efficient both in time and volume . In order
to help inter-designer communication, it is also intended that ADL should
provide good design documentation.

ADL aims to provide a useful aid while still permitting the designer
some freedom to develop new approaches when faced with new problems. Further
more, the constructs of the language have deliberately been kept closely re
lated to practical hardware implementations to enable the designer to have a
' feel' for the actual logic \vhich will eventually be generated . This approach
it is hoped will permit the skill of experienced designers to be used to the
full .

1.2. Formal Design Methods

A number of high-level design systems [8] already exist. Some, such as
ISP and PMS are more properly logic description systems and are too high lev
el to be of practical use for automatic logic generation. Others, e . g. DDT.,
are aimed at synchronous or serial systems. ·

Although the two graphical approaches, Petri Nets [9] and LOGOS [10] are
suited to parallel, asynchronous system design,they appear impractical for
large systems. The pictorial approach makes it very difficult to examine more
than a small part of the design at any one time. In addition, LOGOS, which
uses two graphs - a data graph and a control graph - seems to need a signifi
cant amount of extra text to cross reference between the graphs.

2. THE STRUCTURF. OF AN ADL DESIGN

A design expressed in ADL is hierarchical in that it is a block defini
tion. Within that block definition reference may be made to constituent
blocks (called subblocks) which may or may not already be in existence. Nat
urally, these subblocks can themselves be defined as ADL blocks with their
own constituent subblocks. The lowes t level of the hierarchy consists of
basic subblocks such as registers, decoders, etc . Design of these low-level
constituents is best done at the gate level rather than in ADL as they are
conceptually simple and should be represented by the most efficient logic pos
sibl e. An extendable library of these basic subblocks is held in the data
base and includes many of the common primitives required.

Within an ADL block there may exist a number of control paths operating
in serial or parallel as required . Use of appropriate branch and synchron
isation constructs pP.rmits paths to diverge and converge . A given path is
divided into alternate task and control sequence sections; a task specifies
the set of concurrent events which are to occur when the task is active and
a control sequence determines which task(s) require activation when the cur
rent task is deactivated. A task remains active until the control signal

Cm.1PUTER-AIDED DESIGN SESSION

ADL : a n Hie rarc hical Log i c Design La ngu age 329

combination for which the task waits has occurred. For example

Tl 'FLOW' a +- b ,
c +- d ;

Task Tl 'SET' sig3, sig4;
'WAIT FOR' sigl & sig2;

-+ TS; Control sequence

Here, when Tl becomes active (as a result of a control transfer to it from
some other task(s)), the data transfers from b to a and d to c are enabled
and sig3 and sig4 set to '1 ' . This state persists until the control signals
sigl and sig2, are both set to '1' in response to the setting of sig3 and
sig4. At this point, the task is deactivated and control is transferred un
conditionally to TS.

3. ADL LANGUAGE CONSTRUCTS

The language features are summarised below; a more detailed description
may be found in [11,12]. An example of the use of ADL is given in the ap
pendix.

3.1. Static Declaration Section

An ADL block definition starts with a specification of the block inter
face and the interfaces of constituent subblocks . Note that a block inter
face is defined in terms of data ports and control signals. In addition,
facilities exist to permit control signals local to the block to be defined
as well as any invariant data paths. For example

'BLOCK' B ['INPUT' BIN [0:15)/BINREQ/BINACK/
'OUTPUT' BOUT [0:7]
'CONTROL IN' BA 'CONTROL OUT ' BZ];

I SUBBLOCK' SB-
SBOCCl ['INPUT' SBl [0:3], SB2 [-2:1] 'OUTPUT' SBO [0:7]

'CONTROL IN' SBCA 'CONTROL OUT' SBCX];
'LOCAL CONTROL' LCA, LCB, LCC;
'CONNECTION' BOUT + SBO;

This defines a block B which has a 16-bit input port, BIN, 8-bit output port,
BOUT, and four control signals, BINREQ, BINACK, BA, BZ. Note that BINREQ/
BINACK are specifically used to control data flow to port BIN and form a
request/acknowledge pair which can be used to provide a 'handshake' signal
ling system between blocks. A subblock of type SB with two 4-bit input ports,
an 8-bit output port and two control signals may or may not have already have
been defined; an occurrence SBOCCl is used with interface names SBl, SB2, SBO,
SBCA and SBCX.

The 'local control' construct is used to define control signals additonal
to those defined as part of the interfaces of block Band subblock SBOCCl. LCA,
LCB and LCC are available only within B and are useful in providing communica
tion between various control paths and in controlling the internal timing of
the block.

CALTECH CONFERENCE ON VLSI, January 1979

330 H.J.Kahn, A.K. Burston, D.J.Ki nn imen t

The 'connection' statement indicates that data ports SBO and BOUT are to
be permanently interconnected and hence no further transfer-enabling logic wi ll
be required. In its most general form, this construct can be used to define
quite complex data port connections.

Any digital system must be set to a predefined state when initially
'powered up' in order to ensure correct operation. In ADL, it is assumed that
a 'general reset' signal will exist and that all tasks and control signals will
be made inactive unless specifically excluded by use of an INITIALIZE or
INITIALIZE CONTROL statement.

3. 2. Control Section

This section contains task definitions and control sequences.

3. 2. 1. Tasks

Tasks are delimited by a task label and a timing statement such as
WAIT FOR

e.g. Tl : statements
'WAIT FOR'LCA + LCB;

The effect of the WAIT FOR is to suspend control within Tl until the
appropriate signal state combination has occurred . Note that all control
signals in ADL have an associated flag and that when the task is deactivated,
once either LCA=l or LCB=l, the flag for the relevant control signal is reset.

The most common statements which occur within a task are FLOW, SET and
RESET which allow data paths and control signals to be modified. For example

(i) 'FLOW' SBl + BIN (12: 15];
causes a temporary interconnection between a part of BIN and SBl. This
interconnection is only enabled when the task in which the statement
appears is active. Note that a single port may have data 'flowed' to
it from many different sources at different times and logical operators
may be used to combine data ports.

(ii) 'SET' LCA; or 'RESET' SBCl, LCB;
These permit explicit setting/resetting of control signals in order to
enable communication between separate tasks.

3.2.2. Control Transfer

A range of control transfer instructions is available to permit control
paths to bra.nch conditionally or unconditionally. The most basic of these is
-+ . For example

-+T4 transfers control to task T4
-+(T3, T9) transfers control to T3 and T9 simultaneously.

The control transfer may be made conditional by prefacing the '-+ ' with
'IF' condition 'THEN'. For ~xample

COMPUTER-AIDED DESIGN SESSION

ADL : a n Hie rarchi c al Logi c De s i g n Language 331

'IF' SBO = 0 'THEN' + T8;

A 'no destination' statement, * , is available to terminate a control path.

A more complex conditional, DECODE, provides a parallel control path
switch based on the state of a data port. For example

'DECODE' BIN [3:6] + [T3, TS, T6, (T7. TlO)];

transfers control to all destinations for which the corresponding bit of BIN
is at a logical 1.

The basic 1 + 1 statement and the simple conditional version may be made
to operate in either parallel (II) or serial (#) mode. For example

Tl : statements
'WAIT FOR'

+ T4 ;
condition 1;

II
'IF' condition 2 'THEN' + T3;

+ T2

Here T4 will always be activated; T3 will be activated if condition 2 is
true otherwise control is transferred to T2.

The constructs discussed so far provide most of the facilities needed
by the hardware designer. However, there remain two problem areas of con
siderable importance to the designer of complex, parallel systems; priority
resolution and the control of mutually exclusive access to a shared resource .

3.2 .3. Priority Handling

It is typical of parallel systems that a control path may be activated
from a number of different positions. Assuming only one activation at a time
is permitted, a decision must be made about which activation to allow. In ADL
this is done by inserting a special priority mechanism in the control path.
This mechanism consists of a PRIORITY WAIT which appears inside a task (in
stead of a WAIT FOR) and makes use of a PRIORITY BLOCK to do the decision mak
ing. For example

'PRIORITY BLOCK' PB
PBOCC [3];

can be used to decide between three conflicting requests and might be acces sed by

TS : 'PRIORITY WAIT 1 PBOCC-
Pl 'WHEN' LCA 'THEN' + T6,
P2 'WHEN' LCB 'THEN + T7,
P3 'WHEN' LCC 'THEN' + T8;

In this example, suppose TS i s active when one or more of the control
s ignals occurs. The states of all three control signals are staticised and in
put to PBOCC together with a special 'make a decision' signal. After a delay,
a 'decision made_' signal will be generated and a wire corresponding to an
active control signal will be set so that control can be passed to one of T6,
T7 or T8. I f required,data ports can be used by the priority block to alter

CALTECH CONFERENCE ON VLSI, January 1979

332 H.J.Kahn, A.K.Burston, D.J.Kinniment

the decision making criteria.

3.2.4. Mutual Exclusion

This problem is one of preventing simultaneous access to a shared resource
by two or more parallel control paths. The ADL solution to this problem uses the
hardware equivalent of a semaphore. A special controlled priority block which is
used by two or more priority waits must be defined. The priority waits are at
the start of the sections of control path concerned with accessing the shared re
source. The sections are called the 'critical sections' of the relevant paths .
For example

'CONTROLLED PRIORITY BLOCK' CPB
CPBOCC (2];

Tl : 'PRIORITY WAIT' CPBOCC-
Pl : 'WHEN' LCA 'THEN'+ T2;

T41: 'PRIORITY WAIT' CPBOCC-
Pl : 'WHEN' LCB 'THEN'+ T42;

Assuming both Tl and T41 are active, when either LCA or LCB is set a priority
decision is made and control continues with T2 or T42. The other path is sus
pended and CPBOCC is 'locked'. When the active path no longer requires the
common resource, it issues a release statement such as 'RELEASE' CPBOCC. Any
outstanding requests to the priority block will then be considered.

4. IMPLEMENTATION

4.1. The ADL Translator

A logic design expressed in ADL is input to the translator which applies
syntactic checks and produces as output an intermediate data structure (IDS)
which can be used by a number of different programs including the logic genera
tor. The IDS, which is stored in the data base, is a set of tables which are
closely correlated with the original text except that certain duplication is
avoided. For example, if the same flow statement appears in more than one task
the flow information is stored once only so that the logic generator need only
create one version of the logic.

4.2. The ADL Logic Generator

The logic generator uses the IDS to create the logic for an ADL block.
It operates in two passes and requires that the interface details of the block
and of any constituent subblocks be fully defined. These details include load
ing and fan-out constraints which can be input via the Command Processor.

During the first pass, the IDS is examined and idealised 'meta-logic' is
produced . The main logic synthesis is carried out at this stage but practical
constraints of fan-in and fan-out are ignored. The second pass of the logic
generator transforms the meta-logic into the particular technology required and
adjusts the gating to take account of fan-in, fan-out, inversion and loading.
This approach, which is commonly used to aid portability in programming lang
uages,is flex~ble and localises the effects of having to generate logic using
a number of rapidly developing technologies . An example of part of the logic
generated for the design given in the Appendix is shown in Fi g .Al .

COMPUTER-AIDED DESIGN SESS ION

ADL: an Hi e r a rchical Log i c De sig n La nguage 33 3

It should be noted that the ADL logic gener ator does not need to fill in
the detailed logic for subblocks within the block being examined . A separate
integrating program assembles a complete network from the logic information which
is stored in the data base for each of the blocks and subblocks.

4.3. Meta-logic

ADL language constructs are represented by combinations of simple function
modules which are, in principle, implementable in any technology. The full set
of these meta-logic modules and some typi cal implementations are shown in Fig.l.
The purpose of each module is summarised as fo llows :

Task Initiates the functions (e.g . FLOWs, SETs) within a task and

Signal

If
Decode

Edge buffer
Flip-flop and
Delay

waits for task completion.
Provides a static flag t o indicate the occurrence of a control
signal.
Propagates one of two control paths depending on a data condition .
A group of decode modules selects a subset of control paths t o
propagate.
Converts an edge to a level for testing .
Used to staticise signals to be tested inside priority wait
statements.

In addition, three basic gate types, AND, OR and EQUIVALENCE, which are assumed
to have infinite fan-in, are available. Further details of the operation of the
modules may be found in [7].

5 . CONCLUSIONS

A number of experimental logic designs have been developed to t est the
system. Although the quality and efficiency of the generated l ogic is yet to be
evaluated, experience indicates that ADL is convenient to use and provides a
v iable formalism for expressing the concepts of logic design.

Future work planned includes implementation of the logic integrating
program, production of a system level simulator and an automatic diagram draw
ing package to provide graphical output to accompany an ADL design.

CALTECH CONFERENCE ON VLSI, January 1979

334 H.J.Kahn , A.K.Burston , D.J.Kinniment

REFERENCES

[1] de Man H. :
"Computer Aided Design : Trying to Bridge the Gap"
European Solid State Circuits Conference, Amsterdam, 1978.

[2] Kahn H.J. and May J.N .R. :
"The Use of Logic Simulation in the Design of a Large Computer System"
Radio Electron. Eng., Vol.l, 497-503, 1973.

[3] Lavington S.H. :
"The r.tanchester Mark I and ATLAS - A historical perspective"
CACM, Vol.21, No.1, 1978.

[4] Ibbett R.N. and Capon P.C.
"The Development of the MUS Computer System"
CACM, Vo l. 21, No .1, 1978.

[5] Wilson T .B. :
"A Data Description Language"
M.Sc. Thesis, University of Manchester, 1974.

[6] Wilson T. B. :
"A Data Base Management System for the MUS Computer"
Ph.D. Thesis, University of Manchester, 1976.

[7] Burston A.K. :
"An Integrated Logic Design System"
Ph.D. Thesis, University of Manchester (to be submitted).

[8] Special Issue on Hardware Description Languages
COMPUTER, December, 1974.

[9] Petri C.A.:
"Kommunikation mit Automaten"
Schriften des Rheinsch - West-Falischen Inst. fur Instrumentelle
Math., Univ. Bonn, 1962.

[10] Rose C.W., Bradshaw F.T., Katze S.W.
"The LOGOS Representation System"
IEEE Proc. COMPCON, September 1972.

[11] Burston A.K. :
"The Development of a Computer Logic Design Language"
M.Sc. Thesis, University of ~~nchester, 1975.

[12] Burston A.K., Kinniment D.J., Kahn H.J. :
"A Design Language for Asynchronous Logic"
Computer Journal, November 1978.

COMPUTER-AIDED DESIGN SESSION

ADL: a n Hierarchical Logic Design Language 335

(e) TASK NODULE (b) S]GNAL NODULE

IJAlT SATlSFlED

FORCE
CLEAR

FORCE
SET

FREEZE

CTlVE

NOT
ACTl VE

~-----+I-I~~S]GNAL
ACTIVE

RESET EDGES Sl GNAL

C 0 N T R 0 L -71----'------f

D AlA -1!--------;

CLEAR RESET

'I---~ HUE

)---~FALSE

RESET

L EV(L OUT

(41) EDGE BUFF~R
RESET

EDGE lN

lc) lF MODULE CONTROL ~TRUE
DATA--L_j

<•>DECODE

lN OUT

(t) fllP FLOP

ltd AND GATE (I) OR (;ATE (j) EOUlVALENCE GATE

Figure 1 Meta-logic Hodulcs

CALTECH CONFERENCE ON VLSI, January 1979

336 H.J.Kahn, A.K.Burston, D.J.Kinniment

Apoendix - An Example of ADL

The example is the design of a subblock to perform the "compression"
function . The operation is defined as follows: given two equal length bit
vectors MASK and DATA a vector of less than or equal length, RESULT, is
produced from DATA by suppressing all the bits of DATA for which a "0"
appears in the corresponding position in ~ffiSK . For example:

DATA
MASK
RESULT

10110101
01100110

01 10 = 011 0

The subblock works on 8 bit elements, unused bits of RESUL '!' are zero
filled. The output of the unit is buffered, that is, a second calculation
can be performed whilst the result of the first is held on the output, ready
to be accepted by the outer block. Handshake control is used throughout.

';he overall operation of the unit consists of three parallel control
paths. ';he f'irst is the main loop (T1, T2, T4, T5 , T6, T7, T8) which is
concerned with shifting the data and setting Rl:.SUL T. The second ('!'3) is
concerned with counting the number of iterations performed . The third (T9)
is concerned with buffering the output.

'BLOCK ' COMPR~SS['INPUT' MASKIN[0 : 7),DATAIN[0:7) 'OUTPUT' DATAOUT(0:7)
' CONTROL IN ' GO, ACCEPTED ' CONTROL OUT ' TAKEN, DONE];

!!"!ASKIN - d bit input port for the l1ASK.
DATAIN - d bit input port for the DATA.
DATAOUT- ~ bit output port for the RESULT.
GO - start calculation, input data ready.
TAK~N - calculation performed, ready for new input data .
VON~ - output data ready for taking.
ACC~PTcU- output data taken, may now change;

' bASlC SuBBLOCK' ~XREG -

A('INPuT' AIN[0:7) 'OUTPUT' AOUT(0:7J
'CONTROL IN ' LOADA,SHIFTA ' CONTROL OUT ' LOADADN,SHIFTADN],

~['INPUT ' BIN[0:7] 'OUTPUT' BOUT[0:7]
'CONTROL IN ' LOADB,SHIFTB 'CONTROL OUT ' LOADBDN,SHIFTBUN],

C['INPUT ' CIN[0:7] 'OUTPUT' COUT[0 : 7]
'CONTROL IN' LOADC,SHIFTC ' CONTHOL OUT ' LOADCDN , SHIFTCUN],

Ul'INPUT' UlN[0:7J ' OUTPUT ' UOUT[0:7]
'CONTkOL I~' LOAUU,SHlFTD ' CONTROL OUT ' LOADDDN,SHIFTDDN);

!cXx~G - general purpose shift register with parallel load.
I~ - d bit parallel input port . OUT - 8 bit parallel output port.
LOAD - start load cycle. LOADDN - load cycle complete .
SHlFT- start shift, output is shifted one place left, top bit is lost,

bottom bit is replaced by bit on bottom end of IN.
SHlFTDN - shift cycle completed .
regi~ters: A- MASK, B - DATA, C - RESULT, D - output buffer;

COMPUTER-AIDED DESIGN SESSION

ADL: an Hierarchical Logic Design Language

' bASlC SUBdLOCK ' COUNT~H -

COUNT7L ' OUTPUT ' Z~HO ' CONTrtOL IN' SET7 , DEC 'CONTROL OUT ' S~T7Dh,UECD~];

!CUU~T~H - down counter .
Z~HO - equals "1" if counter contents are zero.
ScT7 - set counter contents to 7 . SET7DN- contents reduced by one .
D~C - reduce contents by one . D~CUN - contents reduced by one;
'LOChL CUN~HOL ' SUbTHAC~ , AVAIL;
!SUbTHACT - set wnen a aecrement of the counter is complete.
AVAlL - set when tne output buffer is empty;

' CONN~C~lON ' AIN <- MASKIN , biN <- DATAih, DIN <- COUT , OATAOUT <- DOUT;

'l!dTlALIZc.. ' T1; ' l~lTIALIZI:. CONTROL ' AVAIL;

I b2GIN ' ;

' U~CI~lONS '; !decide if the current bit is to be saved;
IJ1: ' lF ' AOUT['lJ =O ' THEN' - > T5;

-> '!'4;
'~NU Dt.C IS IONS' ;

T1: !wait for input, indicate ready;
' S~T ' TAt<EN;
' wRIT FOH ' GO;

T2: ! initialize counter, RESULT, get input;
'FLOw ' CIN <- ~00; ' SET' LOADA ,LOADB,LOADC,SET7;
'hAlT FOH ' LOAUADN&LOADBDN&LOADCDN&ScT7DN ;
-> (T3,D1);

'!'3: !decrement counter;
' S~T ' D~C;

' ~AlT FOH ' UECDN;
'SET' SUBTHACT;
*; !terminate this control path;

T4: ! transfer one bit from DATA to R2SULT;
'FLO~' CIN[O]<- BOUT[7J; ' SeT' SHIFTC;
'WAlT FOH ' SHIFTCDN;

T5: !wait for end of cycle;
' wAIT FOR' SUBTRACT ;
'IF' ZEHO ' THEN ' -> T7;

II -> T3;

T6: !shift DATA and MASK up one place;
'SET' SHIFTA, SHIFTB ;
'WAIT FOR' SHIFTAUN&SHIF'!'BDN ;
->D 1;

337

CALTECH CONFERENCE ON VLSI, January 1979

338 H. J.Kahn, A. K.Burston, D.J . Kinniment

T7: !wait for output buffer to become free;
'~AlT ~On' AVAIL;

To: ! transfer H~SULT to output buffer;
I St.T I LOAOO i
' ~AlT fOH ' LOADDUN;
- > (T1,T9);

T9: !indicate output available and wait for reply;
' .St.T ' U(JNt:: ;
'~A lT FOR' ACCePTeD;
' SeT ' AVAIL;
*. '

' ENI.J 1 i

~igure A. 1 shows the generated logic for the section of control
surrounding task T5.

COMPUTER-AIDED DESIGN SESSION

()
:x>
t"'
~
t:tj
()
::r:
()
0
z
~
t:tj
:::0
t:tj
z
()
t:tj

0
z
<
t"'
UJ
H

y
$1)
:;::3
~
$1)
'i
'<

!--'
(0

~
(0

FROM SETTING
EDGE B UH E R S

i 1
-,

Sl GN/.L I

NODULE I

"SU!ITRACT " I

~
n

~ ~ EDGE

~ER

NONlTOR FREEZE

r ~

~ TASK

INITIALIZE NODULE

TIED TO ZERO ~ "T&"

I
l (l\

-INITIALIZE I _!11

n EDGE 1F NODULE IN BUFFER
DECISION, -

TRUE OUTPUT

L--.7

T1 DEACTIVATED ~

ED GE
BUFFER

~MONITOR

I
"ZER 0''

-·

I

TASK 7

EDGE
BUFFER

I Tr"S K 3 TASK 6

lJ EDGE
BUFFER

M

Figure Al : Generated Logic for Task TS

:x>
t::1
t"'

$1)
:;::3

::r:
<D
'i
$1)
'i
(")

::r
(")
$1)
!--'

t"'
0

OQ
......
(")

t::1
<D
(J)
......

OQ
:;::3

t"'
$1)
:;::3

OQ
~
$1)

OQ
<D

w
w
(0

