
THE TRIMOSBUS

by

1 2
Ivan E. Sutherland, Charles E. Molnar

3 1 ..
Robert F. Sproull and J. Craig Mudge '

1 California Institute of Technology
Pasadena, CA 91125

2 Washington University
St. Louis, MO 63110

3 Carnegie-Mellon University
Pittsburgh, PA 15213

'*Digital Equipment Corporation
Maynard, MA 01754

The research leading to this paper was supported in part
by the Defense Advanced Research Projects Agency, contract
no. N00039-77-C-0185; in part by the NIH Division of Research
Resources, grant no. RR00396; and in part by Digital Equipment
Corporation.

CALTECH CONFERENCE ON VLSI, January 1979

396 .L. LJ. uu '-'.&.J. \.; .L ..L.Q..LJ.U. 1 v • ..1....1 . .. u.v..J...u.a..J..

R.F.Sproull, J.C.Mudge

ABSTRACT

This paper describes a family of communication buses that
permit individual senders to communicate with an arbitrary num­
ber of receivers and to wait for the last receiver to respond.
TRI in the name signifies the use of three wires for sequencing.
The bus is speed-independent in that no assumptions about the
relative or absolute speed with which bus participants respond
to bus signals are required to ensure proper sequencing of bus
operations.

Data are passed by two separate mechanisms. First, during
normal bus operation a number of parallel data wires are used
to transmit individual characters or numbers. The MOS part of
the name refers to the fact that the high input impedance of
MOS circuits permits us to use these data wires themselves as
storage nodes . Second, for debugging, testing, and error re­
covery a slower serial data path is provided.

This paper also describes a TRIMOSBUS message protocol.
The protocol uses sequences of bus cycles to transmit messages
of arbitrary length. The unique sender can be selected either
on a message by message basis by arbitration, or within a mes­
sage by mutual consent. We plan to use the TRIMOSBUS and this
message protocol in a variety of system designs at Caltech,
Carnegie-Mellon University and Washington University.

SELF-TIMED LOGIC SESSION

39~ 1.~. ~utner1ana, c.~.Mo~nar

R.F.Sproull, J.C.Mudge

as IEEE 488 [1], use more signaling transitions to transfer a
single datum. The use of a minimum number of transitions is
especially advantageous in MOS circuitry because its relatively
low output current makes off-chip transitions slow.

The TRIMOSBUS design relies upon the low output current
property of MOS circuitry to avoid transmission line problems.
Because of this low output current and because of the rela­
tively small physical size of systems built with highly inte­
grated MOS components, signal transition times can be kept long
compared to transmission line delays. In effect, one can treat
each signaling wire as an equipotential node rather than as a
transmission line. In a transmission line environment, the
task of communicating from one sender to many receivers is made
more difficult by the need to accommodate transmission delays
and to avoid reflections in the transmission line. An equipo­
tential environment is free of these difficulties.

How long can a TRIMOSBUS be? In typical MOS circuits
today, off-chip transition•times are measured in tens of nano­
seconds, and so propagation delays of about a nanosecond , which
correspond to bus lengths of about 20cm, should generally
satisfy the equipotential assumption. Buses with greater physi­
cal extent must be operated more slowly. It appears that the
equipotential assumption may be satisfied for any bus length if
the ratio of the bus drive current to its capacitance per unit
length is sufficiently low and the interconnecting path is
lossless. For high resistivity interconnects, such as diffused
or polycrystaline silicon paths, this simple analysis does not
suffice; at the higher circuit densities anticipated in the
future the scaling of both distances and interconnect properties
needs further examination .

The reliable one-to-many communication of the TRIBUS
presents several opportunities to ease debugging and testing.
For example, the bus can be "single-stepped" simply by control­
ling one receiver's response with a single-step switch. Because
the bus requires responses from all receivers to operate, it
will be stalled until the single-step rece i ver is released .

Second Level of Specification: DATA FLOW

An important attribute of MOS circuits is the high imped­
ance of inputs, and of outputs that are disabled. This permits
data wires to be used easily as temporary storage nodes. In the
TRIMOSBUS design, a sender drives the data wires to the desired
value, and senses the voltage on these wires. When the data
wires reach the correct voltage, the sender turns off the driv­
ing current source before signaling that the data are ready.

SELF-TIMED LOGIC SESSION

The Trimosbus

Thus, a sender disconnects as soon as a data value has been
delivered to the bus, rather than having to wait for the slowest
receiver to capture it, and the bus itself provides a level of
buffering for each transmission.

The TRIMOSBUS design includes several features designed to
facilitate error detection, debugging and testing. For error
recovery and testing, the TRIMOSBUS design includes a separate
serial communication line as part of the bus. We intend that
each bus participant include a serial shift register debugging
mechanism which can, upon command, report the content of key
state registers in the bus participant. Control of this shift
register is obtained by highly redundant coding on multiple bus
wires, so that it will operate in spite of severe malfunction of
the bus. Serial communication is used to minimize the number of
pins required for this function.

Third Level of Specification: MESSAGES

We have designed a simple message protocol for use in
systems of integrated circuits. This message protocol provides
for messages that consist of one or more consecutive bus cycles.
The last cycle in each message is marked so that all bus partic­
ipants may easily distinguish the end of each message and,
hence, the beginning of the next message. Our protocol allows
senders to transfer the right to use the bus as a part of the
message format; arbitration between contending senders need be
used at most once per message.

The protocol is defined in terms of some simple codes used
to herald various types of messages. The coding space available
for such heralds is not nearly filled. We hope to add message
types to provide for a rich variety of messages in systems in­
volving multiple processors and memories . For example, messages
to report system status and to assist in debugging and testing
could be included.

CALTECH CONFERENCE ON VLSI, January 1979

'-:tVV 1 • .t.. ~U L!lel" l.GlilU, \.., • .C.. lY1V.l..UC1.J..

R.F.Sproull, J.C.Mudge

SECTION II: SEQUENCING

Outline of Operation

The TRIMOSBUS contains two kinds of interconnection paths
which are terminated differently: three sequencing wires and an
arbitrary number of data wires, as shown in Figure 1. The three
sequencing wires are used in a wired-or configuration. Each of
them is terminated with a pullup resistor, as shown in Figure 1,
which, in the absence of drive from any of the bus participants,
will cause it to assume a logically inactive state. InN-channel
MOS and TTL circuitry, this inactive state for a wired-or signal
is the HIGH state. The bus participants can clamp one or more
of these sequencing wires to the active state, the LOW state in
TTL or N-channel MOS designs.

The data wires are terminated with negative resistance to
a voltage source at the switching threshold so that they will
remain in either the HIGH or LOW state for an unlimited time
after they are driven to that state and the drive is removed.
The negative resistance termination is weak enough that it can
easily be overpowered by any of the drivers of the bus, but
strong enough to maintain logically defined signal levels in
spite of noise pickup and charge leakage. Stray capacitance be­
tween the bus wires and ground is, of course, an additional
stabilizing influence.

A communication on the bus requires three successive tran­
sitions on bus wires. In the first transition, a single sender,
selected from several which may be ready to send by an arbitra­
tion mechanism to b~ described later , places its data onto the
data wires of the bus. This requires one transition time unless
all data wires are already in the proper state. The sender
senses the state of the data wires and removes its drive when it
observes them to be in the corre~t state . Because of the nega­
tive resistance termination, the data wires will retain their
state indefinitely long even after the drive is removed.

After removing drive from the data wires, the sender
generates the second transition , a sequencing signal indicating
that valid data are present on the data wires. Sequencing sig­
nals appear on the three sequencing wires in rotation. Before
the DATA VALID transition, one of the sequencing wires is
clamped in the LOW state and two are unclamped and in the HIGH
state, as shown in Figure 2a. This is one of three equivalent
idle bus states as shown in Figure 2a, f and h. The sender
generates its DATA VALID signal by clamping the "next" signal­
ing wire in rotation order to the LOW state, ·as shown in
Figure 2b. After the DATA VALID transition, two of the three
sequencing wires are in the active (LOW) state and one is

SELF-TIMED LOGIC SESSION

The Trimosbus

A

8
c-------=--.J\A,.__J

Sequencing wires

•
•
•

Data wires

Terminator

I
I
I
I

_j

Figure 1: The TRIMOSBUS uses two sorts of wires . Three
sequencing wires are terminated to Vee to permit wired-or
operation. An arbitrary number of data wires is provided,
each terminated with a negative resistance to the inverter
threshold voltage Vt. This negative resistance termination
allows the wires to be used reliably as storage nodes.
Inset: one implementation for the negative resistance
termination.

CALTECH CONFERENCE ON VLSI, January 1979

40~

Sender
a) Bus idle, 0

8 active 0 ---.

b) Sender indicates 0

data valid ~.

c) Receiver 1 observes 0

valid da ta ~.

d) Receiver 1 has 0

taken data .---.
e) Receiver 2 observes 0

valid data , 0

1 . ~ . ~u~ner1ana, ~ .~.mo~nar

R.F.Sproull, J . C .Mudge

Composite
Receiver Receiver 2 Bus Phase

0 0 0

0 " 0 ---. 0 "

0 0 0 . ---. . " • + •

0 0 0

~ .---. • + •

0 0 0 , • . ---. • + •

0 0 0

~. F-... • t •

f) Receiver· 2 has taken data 0 0 0 0

Bus idle,C active

g) Just before end
of next cycle

h) Bus idle,
A active

~ 0 ~ 0

l l
• 0 • 0

l f
0 0 0 0

o Inactive Signaling wire

("High" for NMOS or TTL)

• Active signaling wire
("Low"for NMOS or TTL)

" Wire c lamped to active sta te

~ 0 ~ 0

) •
' 0 • 0

f ;
0 0 0 0

Figure 2: Three-phase bus sequencing is used to indicate
valid data and to wait for all receivers to acknowledge
receipt of the data. Because sequencing wires are termi­
nated to Vee, any unclamped sequencing wires assume the ·
"inactive" state . The three idle states of the bus are
illustrat~d in cases a, f and h. We will use the term "bus
phase" to distinguish the sequencing states.

SELF-TIMED LOGIC SESSION

The Trimosbus 403

inactive (HIGH), which indicates that valid data are available
on the bus, but have not yet been accepted by all receivers.

Receivers recognize that data are valid when they observe
the DATA VALID transition. While the bus was idle, each re­
ceiver was clamping the single active sequencing wire in the
active (LOW) state. Upon observing the DATA VALID transition,
each receiver must clamp the next sequencing wire in the active
(LOW) state as well, as shown in Figure 2c and 2e. Then, when
it has satisfactorily received the data, each receiver unclamps
the originally clamped sequencing wire, as shown in Figure 2d
and 2f. When the final receiver unclamps the originally
clamped sequencing wire, the resistive termination will cause
the third transition, DATA ACCEPTED, by pulling it into the in­
active (HIGH) state, as shown in Figure 2f., thus signaling to
the sender and to all other bus participants that all receivers
have satisfactorily received the data and that the bus is free
to begin the next cycle. Note that the bus has now sequenced
to its next idle state. Figure 3 shows how data transitions
interleave with sequencing transitions in several successive
bus cycles.

Three sequencing wires are required to provide unambiguous
indication that all receivers have successfully received the
data. To achieve speed-independence, one must ensure that a
fast subsequent sender cannot cause confusion in a slow
receiver. Thus, one cannot permit two consecutive signaling
transitions on the same sequencing wire, because a slow re­
ceiver might not observe them. It follows that if only two
wires were used , successive transitions would have to occur on
alternate wires. This is not feasible in a bus with more than
two participants for the following reason. In order to achieve
a one-sender multiple-receiver bus with a minimum number of se­
quential signaling transitions, a transition that signals data
validity must be given by a single sender, which may be any of
the bus participants; a second transition that signals data
acceptance requires agreement by all bus participants. Hence,
the former must be accomplished by a "wired-or" connection and
the latter by a "wired-and". If these transitions are to
alternate and yet not occur consecutively on the same wire,
there is no way to use only two wires, since this would require
that two adjacent transitions on the same wire be both "wired­
or" or both "wired-and".

If a third wire is available, it is possible to satisfy
both the condition that two consecutive transitions must not
occur on the same wire, and that alternate transitions on the
same wire .be an alternation of "or" transitions and "and"
transitions. Such a three-wire design does require that the
functional interpretation of a given signal value on a given

CALTECH CONFERENCE ON VLSI, January 1979

R.F.Sproull, J.C.Mudge

Figure 3: Each bus cycle requires three transitions. The
first drives data wires to the correct state. The second
indicates data validity (DV) by clamping a sequencing wire.
The third indicates data acceptance (DA) by all receivers
when a seq~uencing wire becomes inactive.

SELF-TIMED LOGIC SESSION

The Trimosbus

wires not be the same for all bus cycles. This property was
previously encountered in a two-wire bus design that was con­
sidered and rejected for use in Restructured Macromodules [2] .

The reader is no doubt concerned, as are we, at the
extravagance of three sequencing wires, but they are required
for reliable speed-independent operation with more than two
participants. As will be seen below, we have shared their
cost by using them to provide master clear and maintenance
functions as well as sequencing.

The TRIMOSBUS requires that data values be stored on the
data pathways as charge on their s hunt capacitance. This is a
con sequence of the sparseness of the sequencing signals that
are exchanged on the signalling wires. If timing specifications
are to be avoided, a sender must be sure that bus data are
valid before sending a DATA VALID transition. Removal of
drive from data paths is a more complex matter. If the sender
waits to remove drive until after the DATA ACCEPTED signal, it
is certain that data validity has been maintained until all
receivers have taken the data. However, if the sender is slow
in then removing drive from the data paths, it is possible that
the next sender will drive the data paths while they are still
being driven by the previous sender. This condition appears
undesirable and may produce erroneous data values if the next
sender removes its data path drive while the previous sender is
still driving.

A second alternative is for the sender to remove data path
drive after sending the DATA VALID signal without waiting for
DATA ACCEPTED. Once again, if the sender is slow in removing
drive and all of the receivers and the next sender are fast,
overlapping of data path drive by two senders is possible,
unless the sender also acts as a receiver and ensures that the
DATA ACCEPTED signal on the bus does not occur until after data
path drive is removed. In this latter case, however, there is
no way to ensure that data path drive will be maintained until
all receivers have taken the data. Thus, if conflicting drive
of data paths by two senders is to be avoided, while at the
same time maintaining assurance that data remain valid on the
data path until taken by all receivers, it is essential that
data validity, once attained, be maintained by the data path
even after data path drive is removed by the sender.

One way of doing this is to equip the bus pathways them­
selves with storage ability by terminating them with a negative
resistance in such a way as to make a bistable circuit . For
MOS technology, in which gate inputs and gate outputs in the
"OFF" condition can be made to have very high impedance values,
it is also possible to achieve "dynamic" storage without such
negative res~stance terminators. Although this violates our

CALTECH CONFERENCE ON VLSI, January 1979

':!: V U - -- .., 44- - """" - ' - • .1....1 ~ """"

R. F.Sprou l l , J . C. Mudge

goal of speed independenc e, since s ome upper limit, de termined
by leakage currents , i s the n placed on the length of time that
data values on the bus path can s afely be assumed to remain
valid afte r drive is r e move d, this may s till be a practically
useful approach.

A Design for the Sequencer

TRIMOSBUS sequencing has a three -fold circular symmetry;
the sequencing wires are used in succession, repeating their
function every three cycles as shown in Figure 2. This symmetry
permits one to think of the transitions on the sequencing wires
as c hanges in the "phase" of the bus sequence. The three-fold
symmetry of sequencing suggests that the sequencing control
should also have three-fold circular symmetry. Indeed, we have
found that a simple control mechanism can be implemented using
tri-flops, the tri-stable analog of the bi-stable flip-flop.
This section of the paper will describe a simple control circuit
for TRIMOSBUS senders and receivers which we have built and
tested. The control is shown in Figure 4 .

The control for each sender and receiver contains a tri­
stable circuit to keep a record of the most recent bus phase
as shown in Figure 2a, 2f and 2h . The control detects phase
changes in the bus by comparing the bus phase to the phase of
its tri-flop. The control causes changes on the sequencing
wires by advancing the phase of its tri-flop.

Senders and receivers can detect transitions on the se­
que n c ing wire s with simple c irc ularly symmetric l ogi c fun c tions
which relate the actual phase of the bus to the recorded phase.
Thus, for example , "bus ahead" might be used to describe a
logic function A*Sc+B*Sa+C*Sb, in which A, B, and C represent
the active states of the three sequencing wires and Sa, Sb, and
Sc represent the corresponding internal states of the tri-flop.
By thinking of the relationship between the bus phase and the
tri-flop phase in terms of such circularly symmetric functions,
one is led quickly to simple bus control designs.

In N-MOS or TTL logic, the wired-or arrangement for the
bus wires is a LOW-active configuration. Thus when the three
sequencing wires are in the idle state, one will be LOW and
active and the other two HIGH and inactive. If we call the
three wires A, B, and C and assume that sequencing is in that
order, then if the bus is idle with B LOW and A and C HIGH, new
bus activity will be signaled by C going LOW. The circularly
symmetric function "LOW AHEAD" implies that the bus wire ahead
of the internal state of the control has changed to the LOW or
active state indicating DATA VALID. The circularly symmetric

SELF-TIMED LOGIC SESSION

The Trimosbus 407

A B C Do to
wires

Sender

,-- - --,
Data I

Source ready I_ I
Data 1- Sender I
token I

control I -- I I
I I
I I

Data I I token -
Data 1- Receiver I
.!eody 1 control I - I

Receiver Destination I I
L Sequencer
---- _j

\ I

TRI- MOS- BUS

Figure 4 : Schematic d iagram of a bu s participant. The
source and destination will drive and sense the data wires
respectively. The sequen cer converts between TRIMOSBUS
sequencin~ signals and conven tional two - wire handshaking
signals.

CALTECH CONFERENCE ON VLSI , January 1979

408

PRESH

Ai)VANCE

DATA

READY

A 8 c

L AHEAD
OF F .--.....

l.t..::>u1::ner.tana, 1..-.l!.. tVJu..Luar

R.F.Spro ull, J.C.Mudge

1
- C> DATA TAKt:N

LOW
.._ _ ____,BEHIND L

®

Figure 5a

Figure 5: Logic diagram for sender (5a) and receiver (5b)
of experimental TRIMOSBUS control for use as shown in
Figures 4 and 6. The DATA READY signal in the sender circuit
may be derived from source (1) or source (2), corresponding
to the signaling interpretations shown in Figures 6a and 6b.
The receiver circuit can be seen to be very similar to that
for the sender .

SELF-TIMED LOGIC SESSION

The Trimosbus

ADVANCE

DATA
TAKEN

A 8

HIGH
BEHIND F

c

r----~ DATA
READY

LOW AHEAD
OF L

Figure 5b

CALTECH CONFERENCE ON VLSI, January 1979

410 I. E . Sut he r land , C.E.hlolnar
R.F.Sproull, J . C .Mudge

f unction "HIGH BEHIND" implies that the bus wire behind the
current state has returned to the high or inactive state,
indicating that the last r eceiver has accepted the data from
the previous cycle. LOW AHEAD thus heralds new activity, while
HIGH BEHIND signals completion of former activity. Bec ause
three sequencing wires are used, the HIGH BEHIND and LOW
AHEAD conditions are not mutually exclusive and may be
observed at the same time. Because three rather than two
signaling wires are used , these two conditions can never­
theless be unambiguously signalled even if they should appear
to overlap in time.

A simple experimental bus control circuit is shown in
Figure 5. This control circuit is intended to convert two­
wire four-phase handshake signals as shown in Figure 6 to the
signalling conventions of the TRIBUS. This design was
intended as an experiment to demonstrate a simple bus example
with one sender and two receivers. It does not include
provision for multiple senders or for arbitration among
competing senders, although any number of receivers up to the
limits of distance and circuit constraints may be used. The
control circuits for sender (5a) and for receiver (5b) are
quite similar in that both use a dual-rank tristable circuit
that is connected as a ring counter. When the ADVANCE line
is asserted, the contents of the following (F) tri-flop are
copied into the leading (L) tri-flop. When the ADVANCE line
is not asserted, the contents of the leading tri-flop are
copied into the following tri-flop. The outputs of the
following tri-flop provide drive to the three transistors
that can clamp bus signalling paths A, B, and C to the low
state. Since only one of the three outputs of a tri-flop
is high whe n the tri-flop is in a s table condition, the
sender and receiver controls shown here always clamp exactly
one bus signaling wire while in a given stable state.

The combinational circuits at the bottom of Figures 5a
and 5b generate the ADVANCE signal and signals to the SOURCE
component of the sender and the DESTINATION component of the
receiver. In the sender, a SOURCE that has data to send
asserts DATA READY. When the bus becomes inactive, as
indicated by the HIGH BEHIND ~ condition, ADVANCE is
asserted and the leading tri-flop is loaded with the shifted
contents of the following tri-flop. This does not change
the clamping of the bus signaling paths , but the change in
the leading tri-flop c auses the condition L AHEAD OF F to be
satisfied. This generates the assertion of DATA TAKEN to
the SOURCE, signaling that the bus data paths are free and
the sender control is primed to advance the bus. Upon receipt
of this signal, the SOURCE places its data values on the bus
data wires. When they have reached a valid condition, the
SOURCE rem~ves its data path drive and then deasserts DATA

SELF-TIMED LOGIC SESSION

The Trirnosbus

a) SENDER OPTION 1

I I

{ 1 I
(from SOURCE) DATA READY I

I I I I
DATA TA KEN I j I '\ (from SENDER CONTROL)

I I I I I I I I I I I LBus has advanced and
I I I source may repeat r eques t

I I Source has driven data
Source intends wires to cor rect value
to send data. I and has removed drive .

Source is authorized
to place data on bus.

b) SENDER OPTION 2

Identical to l, except that the last transition indicates that all
receivers have taken the data and source may repeat request.

c) RECEIVER

',.....------....... '
{ } DATA READY (from RECEIVER CONTROL)

I I I
D_AT_A_T_A_KE_-N_.._I-----~{,.....----+-1----...~ (from DESTINATION)

I I I I
Data arel 1 . I I Central may repeat cycle.
on bus. J Rece1ver control

1 has advanced bus.

D
• I . est1nat1on has

completed reading
of data from bus.

4 11

Figure 6: Two-wire handshakin g signals use d by the sequencer.
Two variations of the sender control are shown. The first
allows the data wires to provide a single level of buffering
between the sender and the receivers.

CALTECH CONFERENCE ON VLSI, January 1979

412 I.E.Suthe rland, C.E.Molnar
R.F . Sproull, J.C.Mudge

READY. This in turn causes the deassertion of ADVANCE, which
causes the following tri-flop to be loaded with the contents
of the leading tri-flop. This advances the bus by clamping
the next signaling wire in rotation.

The advancing of the following tri-flop also causes the
HIGH BEHIND F and L AHEAD OF F conditions to be no longer
satisfied. This removes the assertion of DATA TAKEN to the
SOURCE, enabling the SOURCE to begin preparation of its next
request to send on the bus. The HIGH BEHIND F condition does
not hold until the bus completes the cycle and all receivers
have taken the data from the bus data wires. Response of the
sender control circuit to the next assertion of DATA READY by
the SOURCE cannot begin until HIGH BEHIND F holds.

Alternatively, the DATA TAKEN signal to the SOURCE may
be generated from the LOW BEHIND L condition, as indicated by
option 2 in Figures 5a and 6. In this case, the assertion of
DATA TAKEN follows the loading of the leading tri-flop as
before; the deassertion of DATA TAKEN is however held up
until the LOW BEHIND L condition is removed by the signal
from all bus receivers that they have taken the data.

The receiver control operates in a similar manner. The
advancing of the bus by a sender causes the LOW AHEAD OF L
condition to hold, generating a DATA READY signal to the
DESTINATION. The DATA TAKEN signal that follows causes
ADVANCE to be asserted, which advances the leading tri-flop
and removes ·the LOW AHEAD OF L condition. This in turn
removes DATA READY. Following the receipt of the deassertion
of DATA READY, and after it has completed the taking of data
from the data paths, the DESTINATION deasserts DATA TAKEN,
thereby allowing the deassertion of ADVANCE, which allows the
bus trailing signaling wire to be unclamped and a DATA
ACCEPTED signal to be generated on the bus signaling wires
when the . last receiver has accepted the data.

An experimental TRIBUS has been built and tested using
a TTL implementation of the circuits of Figure 5a and 5b.
It was o~erated successfully over a wide variety of internal
delay conditions. We have observed timing asymmetry intro­
duce d by loading one sequencing wire heavily with shunt
capacitance; correct sequencing was maintained in spite of
loading.

In a detailed and complete design for the bus control
circuit, careful attention must be given to avoid race condi­
tions within the circuit. We do not view such a requirement
as compromising our intention that the bus design be speed
independent; any circuit design that satisfies the signaling
sequence co~ditions at the sequencer terminal is acceptable.

SELF-TIMED LOGIC SESSION

The Trimosbus ~iJ

SECTION III: DATA FLOW

The data communication mechanism in the TRIMOSBUS uses the
bus wires themselves as a storage register. The negative re­
sistance termination on the bus wires has already been described
in Figure 1. One can, of course, use as many data wires as one
chooses .

Speed independence in the presence of variations in the
electrical characteristics of individual data wires and drivers
can be guaranteed by source checking . The source detects the
state of the data wires and signals DATA VALID only when it
senses all data wires to be correct. Source checking elimi­
nates the data transition time entirely if data values for two
successive bus cycles are the same . Source checking also can
detect certain transmission errors, such as those caused by
short circuits on the data wires, leaving the bus stopped in
the offending state.

Extenders

The equipotential assumption may limit the practical length
of a TRIMOSBUS to dimensions of a few feet in MOS and no more
than a few inches in faster technologies. Point-to-point
extension of the bus, however, is relatively straightforward.
The idea is that two TRIMOSBUSs remote from each other might be
connected by a cable of arbitrary length and delay. A suitable
controller connects each end of the cable to its TRIMOSBUS .
These controllers serve as senders or receivers on their re­
spective TRIMOSBUSs and communicate with each other through the
cable with a traditional point-to-point asynchronous signaling
scheme.

Two interconnections possible in such a network of
TRIMOSBUSs are: 1) all of the buses in the network are forced
to operate in rigid sequence, since each of the point-to-point
controllers will delay completion of any transmission until its
point-to-point companion reports completion; 2) each extender
may provide a store-and-forward mechanism, allowing the
separate TRIMOSBUSs to sequence concurrently. In the latter
case, of course, one must provide means to avoid choking the
extenders with data and thus causing some form of deadlock.

CALTECH CONFERENCE ON VLSI, January 1979

414

Arbitration

l .E .~uthe r land , C.E.Molnar
R.F.Sprou ll, J . C . Mudge

Although there can be a ny number of r ece ive rs , the TRIMOSBUS
design assumes a unique sender for each bus cycle . The task of
selecting a single sender from many contende rs that may asyn­
c hronously r equest permission to send on the bus is called
arbitration . Arbitration must be attended to carefully, s in ce
there are a number of pitfalls which c an cause low probability
system failures that are very diff i cult to find and c orrect [3] .

In a practical TRIMOSBUS design there are two ways in which
sender selection may be done. First, arbitration will not b e
required if the system design calls for fully sequential opera­
tion. This is the c ase, for example , in systems in which a
single CPU sends read requests to multiple memories. Each
memory must receive all memory requests and address values, so
that it may decide whether or not the request is addressed to
it , but the TRIMOSBUS design r e quires an address assignment
scheme that ensures that only a single memory will respond.

On the other hand , there are systems that must have many
independent senders: for example, systems with collections of
processors operating together, or with channel controllers which
communicate independently with memory. In this case asynchro­
nous arbitration using any of a variety of techniques [4] can
be used to select a single unique sender. It remains to be
s hown here only how to adapt such schemes to the protocol of the
TRIMOSBUS.

An important and somewhat subtle question is what is the
earlies t time that the arbiter may safely signal to the next
sender that it is authorized to initiate a message. If a mes­
sage consists of only a single bus cycle, then the arbit e r may
not designate the next sender until the arbiter has seen the
HIGH BEHIND condition that signals the end of the current bus
cycle. This is necessary because otherwise there is no way for
the arbiter to be sure that the next sender has already seen
the beginning of the current cycle (indicated by LOW AHEAD) .
Thus , .if the arbiter sends the designated next sender a signal
before seeing the HIGH BEHIND of the current bus cycle, it is
possible that the next sender will attempt to initiate a bus
cycle concurrently with the current bus cycle. Because the next
sender (like all other bus participants) must have recognized
the current bus c yc le and accepted it before HIGH BEHIND could
occur, it is sufficient that the arbiter observe HIGH BEHIND to
e nsure that the next sender has already recognized the current
cycle.

If a message consists of more than one bus cycle, another
method will allow the next sender to be designated earlier than
the HIGH BEHIND transition of the last cycle of the current

SELF-TIMED LOGIC SESSION

The Trimosbus 415

message, thus allowing overlap of data transmission with desig­
nation of the next sender. All that is necessary . is: 1) that
the arbiter observes the HIGH BEHIND condition following the
first cycle of the current message before designating the next
sender; and 2) that the next sender has a means of identifying
the last cycle of the current message. In this way, there can
be no ambiguity, since the next sender must recognize the be­
ginning of the current message before it receives from the
arbiter the signal designating it as the next sender. This ,
plus the ability to identify the last cycle of a message,
removes all ambiguity.

CALTECH CONFERENCE ON VLSI, January 1979

416 .L • .C...OUL.U~.L.Ll:t.UU 1 I.., • .C... !VlV.LUl:t..l."

R.F.Sproull, J.C.Mudge

SECTION IV : DEBUGGING, TESTING AND ERROR CONTROL

The TRIMOSBUS design makes explicit provisions for debug­
ging, testing, and error control. Although a bus terminator
is required primarily to provide proper electrical termination
for the three sequencing wires and for the data-transmission
wires, it is a convenient place to house debugging aids as well.
The terminator contains a bus receiver and a short shift regis­
ter which records a history of recent bus data values. The
receiver also provides the ability to "single-step" the bus by
refusing to release its clamp on the "previous" sequencing wire
until an external signal to the terminator indicates that the
bus may proceed. Both the history and single-step functions
can be controlled by connecting the terminator to a computer
system that provides debugging functions.

The terminator also detects certain types of errors on the
bus and reports them to the debugging computer. We have chosen
to devote one data wire of the TRIMOSBUS to data parity; the
terminator constantly monitors bus cycles to detect and report
parity errors. Many kinds of errors on the sequencing wires
can also be detected, such as an individual wire going high and
then low again without any activity on the other wires. The
terminator can also detect prolonged inactivity on the bus and
notify the debugging computer that the bus has "timed out". It
is necessary to introduce the notion of "time" into the
TRIMOSBUS only to detect inactivity; the timeout interval can,
however, be made arbitrarily long.

Other bus participants can also help to detect errors.
Each one can independently check the parity of the bus, a test
which serves to un cover bad sockets or inoperative bus receiver
circuits. Also, a participant may discover errors within it­
self that compromise any further operation . In either case,
the error may be reported simply by failing to let the bus
sequencing wires advance, thereby causing th~ terminator to
detect a bus timeout. Alternatively, a failed bus p~rticipant
may remove itself from participation in bus sequencing by
ceasing to clamp or drive any wires.

Serial Communication

If the occurrence of an error halts normal bus operation,
either because the error has rendered the bus inoperative or
because a bus participant has deliberately stalled bus opera­
tion, we need to be able to inspect the state of individual
system participants by a means independent of normal bus opera­
tion. For ~his purpose, the TRIMOSBUS links all participants

SELF-TIMED LOGIC SESSION

The Trimosbus

together in a single serial connection shown in Figure 7. This
connection is used to shift state information into and out of
the participants to which it is connected. A debugging computer
can examine this state and modify it if necessary.

The notion of making a c hip's state available by a serial
connection is not new. IBM has incorporated such an idea into
standard integrated circuit design practice [5]. Several manu­
facturers link printed circuit boards with a shift register to
provide a debugging computer access to vital system state [6,7]
What we have done in the TRIMOSBUS design is to define this
facility as part of the bus itself.

Although the serial connection itself requires only two
additional pins for each bus participant, some mechanism must
be provided to sequence the shift registers. Additional
controls are also desirable: for example, to read the partici ­
pant's state into the s hift register, or to write the partici­
pant's state from the shift register. Separate reading and
writing controls greatly simplify testing, as they permit
arbitrary values to be inserted in registers and flip - flops
that ot herwise could not be tested exhaustively. These control
functions and the shift register clocking signals are encoded
in a highly redundant form on the bus data wires; thus,
although the bus may not be fully operational, we assume that
most failures will allow it to work well enough to transmit the
needed codes. This mechanism, called HHH signaling, is taken up
in the next section.

HHH Signaling

When normal bus operation is prevented, it is nonetheless
essential to transmit a small number of codes to all system
elements. One such code, !NIT, is needed to initialize the
system and put all receivers in a state in which they are clamp­
ing the same sequencing wire. Three additional codes are
needed to control the serial line: a command to READ the machine
state into the shift register, a command to SHIFT it, and a
command to WRITE the machine state from the shift register.
These four codes, and possibly others, are transmitted over the
data wires by the terminator in a redundant way, so that the
failure of any one bus wire or its connectors or receivers will
not prevent detection of the code. These wires also carry a
"code validity" signal, or "clock", in redundant form. The cod­
ing scheme we h ave chosen requires that the bus have at least
nine data wires .

To commandeer the data wires for this debugging function,
the terminator drives all three sequencing wires to the inactive

CALTECH CONFERENCE ON VLSI, January 1979

418

I" -
Participant I

./

C-r SR

•
Participant 2

~

~ SR

Participant 3

C-r SR

..
'---

...

Connect ion to
diagnostic
computer

I. E . Suthe rland, C . E . Molnar
R.F.Sproull, J.C . Mudge

A 8 C Data
wi res

Terminator

I

Figure 7: A serial communicat ion line is use d to r ead and
write t he stat e of the bus participants for debugging .

SELF-TIMED LOGIC SESSION

TOe 1r1.rnU~UU~ 4 l l::l

state, HIGH in NMOS implementations. This requires substantial
drive capability, because various participants in the system
may be clamping one or more of these wires to the active state.
However, as soon as a participant detects the "all high " (HHH)
condition, it removes all drive on sequencing and data wires.
Then it looks for codes and clock on the data wires which will
control recovery or debugging.

The HHH signaling mechanism is not speed-independent . No
acknowledgement is provided by any of the bus participants.
Consequently, information must be transmitted slowly enough to
ensure that even the slowest receiver responds properly.

CALTECH CONFERENCE ON VLSI, January 1979

4~U ~.~.ouLuer~ana, ~.~.Molnar

R.F.Sproull, J.C.Mudge

SECTION V: MESSAGES

Although the basic signaling conventions of the TRIMOSBUS
are sufficient to transmit information from one bus participant
to another, these conventions establish no interpretation for
these signals . Communicating among elements in a computer sys­
tem linked by the TRIMOSBUS requires another and higher level
of protocol specification . Our choices for this level of de­
sign are motivated by our desire to use a TRIMOSBUS to con­
struct systems containing experimental MOS integrated circuits.
Although some of these systems may use the bus in a conventional
way to link processors and memories, some may wish to experi­
ment with more exotic communication protocols.

Bus Width

Choosing the width of buses in a computer system is a
delicate process, for it inevitably constrains the performance
that can be achieved by the communication system. In addition
to the three sequencing wires, we have chosen to provide ten
wires for transmitting information from the sender to all re­
ceivers: eight data wires, a "tag" wire, and a parity wire that
is set to guaran tee odd parity of all ten wires. This choice
is primarily driven by pin limitations: we want a design that
allows small integrated circuits to connect easily to the bus.

Although HHH signaling requires a minimum bus width of 9,
nothing prevents expanding the bus to arbitrary widths. The
only difficulty in such expansion is to devise a scheme that
allows chips with differing bus widths to be connected together.
The store-and-forward bus extenders described in an earlier
section could, for example, be used to link buses of different
width.

Messages

Bus participants communicate with one another by sending
messages, each of which requires a sequence of consecutive bus
cycles. Because these messages may be arbitrarily long, the
TRIMOSBUS can be used to transmit objects that exceed eight
bits in size. Each of the receivers in the system must decode,
or "parse" the messages it receives on the bus. Not all mes­
sages will be valuable to a particular bus participant, but it
must nevertheless inspect each one to determine its relevance.

SELF-TIMED LOGIC SESSION

The Trimosbus

Although the message mechanism can be put to several uses
in a computer system, it will be illustrated by considering
the conventional communication between a processor and its
memories. A processor will construct a message that contains
all the information required for a memory to "write" a new
value at a given address, and transmit the message over the
TRIMOSBUS. Of all the system components that decipher the mes­
sage, only one particular memory should recognize the address
as its responsibility, and perform the requested write
operation.

The message generated by the processor contains three
parts: a "herald" that indicates that the message is a "write"
command, an address, and a data value. Generally, a trans­
mission of all of these parts would require more than one bus
cycle because more than eight bits are needed. A message to
write a 16-bit value in a 24-bit address space would typically
use a single bus cycle for the message herald, three for the
address, and two for the data value.

Correct operation of the system requires that all system
elements parse messages according to the same conventions.
This requirement does not impose a rigid structure on messages.
Rather, the decoder can be viewed as a finite-state machine
that takes as inputs the successive data values transmitted,
beginning with the message herald. After one or more cycles,
the state machine may determine that the current message is of
no interest, and wait for a new message to begin. The state
machine may also "accept" the message, and cause its bus par­
ticipant to take action. This acceptance is not to be confused
with acknowledging each bus cycle, which must be done in every
case.

Proper parsing of messages requires a synchronizing
mechanism to ensure that all receivers begin parsing when a
message herald is transmitted. This synchronization is
achieved by marking the last bus cycle of a message with the
"tag" bit. All bus cycles except the last set the tag wire to
zero; the last cycle of a message sets it to one. This synchro­
nizes the receivers in a way that makes it easy to construct
variable-length messages .

Transferring Sendership

The TRIMOSBUS message conventions do not require that every
bus cycle of a message be transmitted by the same sender.
Instead, the initial sender can hand control of the bus to the
next sender, which in turn may hand control to a third party,

CALTECH CONFERENCE ON VLSI , January 1979

- - - --- -_ _ , - -~· ' '"' '-'..&.. .L lA...L

R. F.Sproull, J. C.Mudge

or back to the original sender, etc . The conventions for
transferring sendership must be rigidly enforced, for there
must always be exactly one next sender.

The transfer of sendership is best illustrated with a
"memory read" operation. The processor transmits a message
herald that specifies a "read", followed by the address of the
memory location to be read. Then the processor falls silent,
and relies on the specific memory element that recognized the
address to become the sender, so that it may transmit the data
value requested as soon as it is available. The memory tags
the last bus cycle, in order to terminate the message, and, by
convention , sendership reverts to the processor.

The ability to transfer sendership allows very simple
systems to be built that require no bus arbitration mechanism.
A single bus participant starts all messages, which may be
completed by memories or input/output devices that respond with
requested values.

Message Arbitration

If the TRIMOSBUS provides communication among a number of
asynchronous processors, an arbitration mechanism is required
to decide which may use the bus . The arbitration mechanism
operates at the message level, i.e . , it determines which bus
participant may use the bus to transmit the next message, which
may consume several separate bus cycles. This approach allows
arbitration decisions to proceed rather slowly compared to the
speed of bus transmission without limiting bus performance.

It may be necessary to permit a sender to retain control
of the bus in order to transmit several consecutive messages
without interruption. For example, if multiple processors
share a TRIMOSBUS to communicate with memory, the familiar
"test and set" operation might require a read message and a
write message to occur without relinquishing the bus. Alter­
natively, the entire operation might be defined as a single
message.

The Message Repertoire

Message protocols in the TRIMOSBUS can be designed to meet
special needs faced by particular systems. The examples we
have used that illustrate a processor communicating with
several memories are only simple cases. Generally, the messages
will deal with objects and operations that are implemented in

SELF-TIMED LOGIC SESSION

The Trimos bus

the chips or boards connected to the bus. Communication with
functional units such as floating-point arithmetic modules,
or "execution contexts" will lead to more sophisticated mes­
sage formats than we have illustrated. Object-oriented systems
such as Smalltalk [8] or SIMULA [9] may use messages that
specify an object name and an operation to perform on that
object.

The message protocols we have designed all require each
receiver to "associate" on some part of the message to decide
whether it must act. The processor-memory example requires
each memory to decode a memory address and to decide whether
it contains the data associated with that address. More
generally, a message contains a "name" of an object on which to
operate. The object may be the responsibility of more than one
bus participant; a memory cache is a simple example in which a
data value is stored both in a cache module and in a primary
memory module. As another example, one could imagine an air­
craft collision-detection system in which the TRIMOSBUS broad­
casts positions of aircraft when they change. One of the par­
ticipants will use this information to update its understanding
of the aircraft's new position. Other bus participants will
receive the information and compare it to positions of aircraft
for which they are responsible, to see if a collision is
possible.

The associative nature of the message-parsing process is
more suited to the TRIMOSBUS than are explicit physical origin
and destination addresses. Specific addresses would fail to
exploit the one-to-many transmission offered by the TRIMOSBUS
by requiring an explicit destination address. Association also
allows dynamic configuration by altering which bus particpants
are responsible for which names. Although association may re­
quire somewhat more circuitry in a bus participant, the highly
integrated circuitry used to implement these modules may render
such cost negligible.

It is interesting to note that TRIMOSBUS messages can
assume several different roles in conventional computer systems.
The bus peforms well enough to be used as a processor-memory
interconnection. However, it can connect objects of enough
processing ability to be used the way computer networks are now.
Thus message repertoires may occasionally mix low-level commu­
nication protocols such as memory fetches with others that re­
semble high-level network protocols [10]. As the level of
integration of TRIMOSBUS participants increases, message
protocols will look less like a processor-memory connections
and more like high-level network protocols.

CALTECH CONFERENCE ON VLSI, January 1979

q~q 1.~.~u~ner1ana, c.~.Mo 1nar

R.F.Sproull, J.C.Mudge

SECTION VI : A FAMILY OF BUS DESIGNS

In the preceding description of the TRIMOSBUS, we have
intertwined our discussion of the TRI and MOS aspects of the
design. The basic three-wire sequencing mechanism, the
TRIBUS, is applicable to a variety of technologies. Indeed,
our prototype controller is implemented in TTL. The discus­
sions of the equipotential assumption, arbitration, and bus
extenders are likewise associated with the TRIBUS.

The TRIMOSBUS adapts these ideas for MOS implementation.
The most important observation is that MOS implementation
makes it easy to allow the bus data wires to be storage
nodes. Terminating these wires with negative resistance
increases· noise immunity and reduces power consumption in all
chips except the terminator.

Methods for debugging, testing, and recovering from
errors are integrated into the TRIMOSBUS design. The integra­
tion is desirable in part because components such as the
terminator and the data bus wires can be used both for normal
bus operation and for the less frequent interventions. The
integration is also desirable to encourage a style of system
design that recognizes from the outset the need to deal with
errors, debugging, and testing. Clearly, a similar philosophy
can be implemented in technologies other than MOS.

The TRIBUS and TRIMOSBUS designs, as discussed here,
r e present "bus families", rather than completely specified
buses. Different circuit designs, different bus widths,
different communication distances, different arbitration
schemes, and different higher level message protocols can
be found that are consistent with the basic ideas expressed
here.

SELF-TIMED LOGIC SESSION

The Trimosbus 425

SECTION VII: CONCLUSIONS

We have described three levels of specification for a
one-to-many self-timed communication bus. These levels provide
a framework within which one might describe a variety of
specific bus systems. Readers are invited to design their own
favorite communication system within the framework.

One-to-many communication in systems which contain parts
with different and perhaps unknown response times seems
entirely feasible, and in retrospect, fairly simple . The se­
quence in which all participants in such a communication detect
the elements of communication must be consistent . This con­
sistency requirement seems to imply a direct relationship
between the physical size of such a bus and its speed. We have
satisfied this requirement in the TRIMOSBUS design with the
"equipotential assumption"; we assume that the rise time of all
signals is slow compared to the maximum propagation delay. We
speculate that a rigorous proof of the necessary conditions
for safe operation may be found .

Although large systems can be built with point-to-point
interconnections between separate TRIMOSBUSs, such systems
must either run relatively slowly or be organized so as to
localize most communication within the individual TRIMOSBUSs,
and to use the extensions relatively infrequently. Thus, we
find that digital systems can obtain high speed performance
only by careful system organization. This seems to us to be a
system level version of the speed requirement handled in
individual TRIMOSBUSs with the equipotential assumption. As
we have expressed elsewhere [11], the difficulties in contem­
porary system design stem mainly from communication problems
and not from logic design issues. The limitations on
TRIMOSBUS performance are similarly related to communication.

CALTECH CONFERENCE ON VLSI, January 1979

426 I. E . Su t he r land, C .E.Mo lna r
R.F . Sproull, J. C .Mudge

ACKNOWLEDGEMENTS

The ideas in this paper came from many sources. To the
best of our recollection, recognition of the need for three­
wire signaling (TRI) originated in the Washington University
group, following an unsuccessful attempt to design a two-wire
scheme. The idea of using the bus wires themselves for
storage (MOS) arose at Caltech from a suggestion by Chuck
Seitz. Fred Rosenberger of Washington University made a
number of valuable suggestions.

SELF-TIMED LOGIC SESSION

The Tr1mos ous

BIBLIOGRAPHY

1) Institute of Electrical and Electronics Engineers,
"IEEE Standard Digital Interface for Programmable
Instrumentation," IEEE 488-1975.

2) "Restructured Macromodules," Technical Report 49,
Computer Systems Laboratory, Washington University,
St. Louis, p. 25, Feb. 13, 1974.

3) T. J. Chaney and C.E. Molnar, "Anomalous Behavior of
Synchronizer and Arbiter Circuits," IEEE Trans. TC-22,
4, pp. 421-422, April 1973.

4) C. L. Seitz, "System Timing," Chapter 7 in C. A. Mead
and L. A. Conway, Introduction to VLSI Systems,
Computer Science Dept., Caltech, in manuscript, 1979.

5) E. B. Eichelberger and T. W. Williams, "A Logic Design
Structure for LSI Testability." Proc. 14th Design
Automation Conference, June 20-22, 1977.

6) Used by Digital Equipment Corporation in the
VAX-11/780 central processor, 1977.

7) Used by Evans and Sutherland in CAORF digital image
generator, 1975.

8) A. Goldberg, A. Kay (eds), "SmallTalk-72 Instruction
Manual," Xerox Palo Alto Research Center, SSL76-6,
March 1976.

9) 0. J. Dahl and K. Nygaard, "SIMULA--An ALGOL-Based
Simulation Language," Comm. ACM, 9, 9, p. 671,
September 1966.

10) R. F. Sproull and D. Cohen, "High Level Protocols,"
IEEE Proc., 66, 11, p. 1371, November 1978.

11) I. E. Sutherland and C. A. Mead, "Microelectronics and
Computer Science," Scientific American, September 1977,
p. 210.

CALTECH CONFERENCE ON VLSI, January 1979

