
Requirements for a Research-Oriented IC Design System 

by 

Jonathan Allen 

Research Laboratory of Electronics 
and 

Department of Electrical Engineering and Computer Science 
Massachusetts Institute of Technology 

Computer-aided design techniques for integrated circuits have 
grown in an incremental way, responding to various perceived needs, so 
that today there are a number of useful programs for logic generation, 
simulation at various levels, test preparation, artwork generation and 
analysis (including design rule checking), and interactive graphical 
editing. While the design of many circuits has benefitted from these 
programs, when industry wants to produce a high-volume part, the 
design and layout are done manually, followed by digitizing and 
perhaps some graphic editing before it is converted to pattern 
generation format, leading to the often heard statement that 
computer-aided design of integrated circuits doesn't work. If 
progress is to be made, it seems clear that the entire design process 
has to be thought through in basic terms, and much more attention must 
be paid to the way in which computational techniques can complement 
the designer's abilities. Currently, it is appropriate to try to 
characterize the design process in abstract terms, so that 
implementation and technological biases don't cloud the view of a 
desired system. In this paper, we briefly describe the conversion of 
algorithms to masks at a very general level, and then describe several 
projects at MIT which aim to provide contributions to an integrated 
design system. It is emphasized that no complete system design exists 
now at MIT, and that we believe that general design considerations 
must constantly be tested by building (and rebuilding) the various 
subcomponents, the structure of which is guided by our view of the 
overall design process. 

We see these overall design processes as a set of conversions 
through a succession of representations, starting at the level of an 
algorithmic description and proceeding to a mask specification via a 
set of transformations. Each of these representations is keyed to a 

253 

CALTECH CONFERENCE ON VLSI, Janua r y 1979 



254 J o nathan Allen 

particular design focus. Thus, for example, there is an initial level 
at which the algorithm must be represented, and following levels where 
the architectural structure, detailed logic design, electrical 
circuit, and geometrical layout must be described. There is no unique 
partitioning into levels, so that some systems may want to dispense 
with an architectural description, while others may want to add a 
topological layout level. Clearly, these levels pose vastly different 
entities that must be characterized, so that each of the levels 
requires a design language appropriate to the semantic primitives 
(e.g. logic gate or circuit node) that are relevant at that level. 
Despite this diversity of representation, however, the transformations 
that are used to convert between them must preserve the original 
algorithmic intent. That is, the constraints that hold in the 
original algorithmic description (which must, of course, be 
represented in some appropriate linguistic form) must also hold at all 
succeeding levels, although they will certainly have to be interpreted 
in terms of the entities native to that level. Thus, the final mask 
specification must be a realization of a scheme to execute the 
original algorithm, and while the algorithm is expressed by some 
linguistic means with its own set of relevant structures to be 
manipulated, the mask specification will have to represent the base 
for task execution in terms of static geometrical structures. It is 
clear that a major part of the task of building a design system is the 
determination of the levels at which representations are desired, 
followed by a clear semantic definition of what the semantic entities 
are at that level and the (limited) ways in which they can be 
manipulated. Transformations across levels must then express how 
these semantic entities link up. We feel that it is important to 
conceive of the design process in terms of such linked programs with 
clear semantics, and that representational issues (such as common data 
bases) must follow from the more basic linguistic specifications. 

From the start, we have felt that the biggest weakness in the 
present arsenal of IC design tools has been the lack of appropriate 
linguistic means to specify algorithms. Certainly algorithms are 
frequently described in a common programming language, such as ALGOL, 
but for purposes of IC design, such representations are inappropriate. 
Programming languages have generally been devised to specify 
algorithms that will be executed on a single-sequence (e.g. von 
Neumann) computer, and the usual kinds of statements referring to the 
time or space requirements of an algorithm assume such an 
architecture. In hardware systems, however, there is much opportunity 
for parallelism, and so the usual procedural representation of an 
algorithm is inappropriate. What is needed, then, is some means to 
represent the underlying "competence" of the algorithm, devoid of any 
performance bias, so that only those constraints that are common to 
all algorithms that execute the given task contribute to this "deep 
structure". This permits us to then explore the ways in which the 
task can be executed as a separate problem, and hence provide the 
designer wi~h a flexible means to pick the implementation that gives 

COMPUTER- AIDED DESIGN SESSION 



Requi r ements fo r a Research-Oriented IC Design System 

the best space/ time tradeoff f or the particular application at hand. 
We have mounted two attacks on this problem. In one, the job has been 
to find the underlying structure common to all equivalent algorithms, 
while in the other, we have looked for interactive means to explore 
the various algorithmic alternatives. These two projects are thus 
complementary, and we discuss them next. 

Building from considerable experience with the construction of 
computer-based debugging tools for electrical circuit analysis, it has 
become clear that the construction of constraint diagrams is very 
useful for encapsulating what is known about a circuit so that 
inferences can be made about related parameters in a circuit. Typical 
constraints include Kirchoff's voltage and current laws and Ohm's law, 
the latter expressing a constraint between the voltage across and the 
current through, a resistor. Constraint diagrams for electrical 
circuits can be readily drawn, so that inferences can be made about 
circuit variables which control an observed value . One way to think 
of the constraint diagram is to regard it as an expression of the 
enduring, time-independent truth about the circuit. That is, the 
constraints characterize what must hold in the circuit under any 
parametric conditions. 

Next, we observe that this notion of constraint should be useful 
for any system that performs a task, and since the constraint 
representation characterizes what must hold during any execution of 
the given task, it provides a common "deep structure" for all possible 
ways to perform the task. The neutral constraint representation thus 
provides an ideal starting point to begin the design of an integrated 
circuit. The designer is free to pick out any implementation 
consistent with the algorithmic constraints that will provide the 
required performance. 

Attractive as this view may be, there are at present several 
missing pieces limiting the realization of its potential. We need to 
establish that constraint networks can be created for a broad and 
significant class of algorithms, and that an appropriate formalism 
emerges for this purpose. We also need to develop a variety of 
techniques for building performance strategies on the constraint 
representations, and hence provide a means to project several 
space/time performance means from a single underlying constraint 
network. 

Constraint~ are of course a natural way to represent design 
rules, and we are working toward the structure of a broader class of 
rules than just those specified in terms of the layout geometry. 
Constraints such as current density, power, speed, capacitance, and 
other performance parameters should be integrated with those expressed 
at the layout level. This is an example of a general formalism being 
used to control the design at several levels of representation, a 
capability which is likely to be increasingly useful. 

255 

CALTECH CONFERENCE ON VLSI, January 1979 



256 J onathan Allen 

Constraint network representations emphasize the multiplicity of 
ways in which a task can be performed, so it is natural to ask how the 
designer can select a particular performance strategy. One way to do 
this is to start with ~ algorithm for performing the task, and then 
provide means for changing its performance via a set of 
transformations on the original algorithm expression. We have 
constructed linguistic techniques for originally specifying an 
algorithm, and then transforming it into a number of forms which vary 
throughout the space/time design space. For example, some algorithm 
blocks consist of statements that can be executed in any order, and 
hence can be done in parallel (p-blocks), while still other blocks 
contain statements, all of whose right-hand-sides should first be 
evaluated, and then all assignments should be done in parallel 
(c-blocks). Transformations have been defined to convert between any 
pair of these blocks, thus allowing the designer to explore various 
algorithms which are equivalent in terms of input/output behavior. 
Standard do-loop and for-all control structures will also be provided. 
Once the desired architecture is obtained, then it should be compiled 
into logic, represented by a low-level hardware design language. 

Space and time are the fundamental architectural factors which 
can be traded. We expect that the requirements of IC design systems 
will cause the nature and control of these tradeoffs to be heavily 
studied. It is interesting that the design freedom presented to the 
IC designer makes these considerations much more prominent for large 
circuits than they have been in the past. At the current stage of 
research, we feel that it is appropriate to give the designer full 
control of these tradeoffs. Possibly in the future the nature of 
design may be sufficiently understood to encapsulate the design 
exploration process in a program, but we are not there yet. 

From the architectural level, representation at the logic and 
circuit level must be obtained, leading to the layout and artwork 
level. We have not focused our attention on the logic and circuit 
levels, but we have felt that the geometrical level provides problems 
in the management of complexity that need immediate attention. Large 
integrated circuits must take advantage of modular subcomponents, or 
macrocells, and these have to be integrated into the semantic 
representations at the various levels. In recent years, the initial 
standard cell approach, using small pre-compiled functions arrayed in 
rows, has yielded to more general and larger cells, representing 
memories, ALU's, and other structures, which enjoy complete freedom of 
placement on the chip surface. This escape from layout rigidity has 
led to the design problem of specifying placement for these cells, and 
providing the required interconnect. A particular problem of interest 
is the extent to which hierarchical grouping of these cells should be 
automatically enforced as opposed to allowing normal grouping. We 
feel that it is important to benefit from previous designs, and to 
permit fast design of large systems based on these modules, even if 

COMPUTER-AIDED DESIGN SESSION 



Requi r e me n ts f o r a Resear c h-Or iented I C Des i g n System 

substantial inefficiencies remain. Perhaps, by delaying the binding 
of the geometrical layout of these cells, topological representation 
can be stored for them in · the designer's library, providing 
flexibility of connection and shape which can be made responsive to 
the overall layout constraints of the circuit. Of course, the ways in 
which these topological specifications are bound into geometry affects 
the corresponding circuit performance, so that as the geometry is 
instantiated, it is necessary to enforce the kind of extended design 
rules discussed above which not only restrict placement on the 
surface, but also constrain the circuit performance. Rapid artwork 
analyzers are needed to keep the geometrical and circuit 
representation linked up and related to the design constraints. The 
circuit representations must permit ready analysis and simulation for 
a detailed view of performance. Thus we feel it is extremely 
important to view the layout problem in terms of all its consequences, 
and to provide high-speed interactive means to explore these 
relationships. So just as we have placed heavy emphasis on the 
initial pole of the design trajectory, i.e. the algorithmic 
specification, we are also focusing heavily on the set of issues tied 
to the binding of layout geometry at the other final pole of the 
design process. Both areas require flexible, semantically clean 
representations, with options for binding of decisions available 
interactively to the designer. 

The need for highly interactive computing facilities, 
particularly for graphic editing of the various representations, has 
led us to build an extended version of the MIT AI Laboratory LISP 
computer. This machine is designed as a personal computer, capable of 
providing very fast response. It has a large (24-bit) address space, 
and gives performance competitive with many large time-sharing 
systems. Two graphic bit map displays are provided, one for black and 
white, and one for color. These displays are refreshed from main 
memory while the computer is running, so that the displays are updated 
immediately as new data is computed. since the two displays run 
simultaneously, large figures can be displayed on the black and white 
monitor while detailed views are available on the color display. The 
computer provides 128K 32-bit words of main memory plus 16K words of 
writable control store and a 300 megabyte disk. Both keyboard and 
"mouse" are supplied for manual interaction. This machine is 
connected by a local network to several other machines at MIT, s o t hat 
large data bases and control services such as printing can be 
accessed. LISP is seen as an excellent language for the construction 
of data structures as well as interpreters at a variety of levels, and 
we feel that the flexibility provided by the combined hardware and 
software resources is important during research on the structure of an 
IC design system. A DECSYSTEM-20 computer is also available, and 
several simulation, artwork analysis, and plotting programs are used 
on this facility, which is also tied to the local network. In time, 
we expect that several LISP machines may be devoted to the IC design 
effort, all linked together, and to other large machines for data base 

257 

CALTECH CONFERENCE ON VLSI, January 1979 



258 Jonathan Allen 

management and less interactive tasks using established programs 
available within the research community. Our view is that computing 
facilities of this type are essential to the design of a comprehensive 
design system, and will form the base of practical systems of the 
future. 

The emphasis which we have placed on linguistic specification and 
manipulation of representations coupled with layout editing and highly 
interactive graphical computing must lead, of course, to a complete 
design system which permits the designer to convert an algorithm to a 
set of mask specifications. In order to focus these efforts, we are 
designing several circuits which should provide insight into the 
design system requirements. These include a speech synthesizer, a key 
encryption system, and a local network interface. Each of these 
projects is based on an original MSI design of between 120 and 150 
dips, and each algorithm designer is also working on aspects of the IC 
design problem. We are even designing a microprocessor to serve in a 
next-generation LISP machine, so that our IC design efforts are 
reinforcing the tools available for such work. The study of various 
aspects of a design system, such as circuit simulation, may also lead 
to the design of special computing facilities for these tasks, 
particularly when these processes are time-consuming and expensive on 
conventional machines. 

Acknowledgement. The IC design research described in this brief 
overview is part of a project devoted to means to convert algorithms 
to integrated circuits sponsored by AFOSR, of which the author is the 
principal investigator. Gerald Sussman and Guy Steele have been 
studying constraint systems, and the work on algorithm transformations 
is contained in Glen Miranker's doctoral thesis. Ronald Rivest and 
Andrea LaPaugh are working on generalized placement and routing, and 
Paul Penfield is devising artwork analysis algorithms. Clifford 
Fonstad and Dimitri Antoniadis have been interested in new device 
technology and process modeling, while the LISP machine has been 
designed and built by Tom Knight, Jack Holloway, and Richard 
Greenblatt. The cross-disciplinary interaction of these people has 
led to a. number of refreshing insights, and the start of many new 
research interests motivated by the needs of IC design. 

COMPUTER-AIDED DESIGN SESSION 


