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above is a computer program, written 

fifties. The program is represented 

in the way we would program in 

in the very same way it is stored 

in the computer : i t is the lowest level descript ion of a program. Now-

adays a program will be written in a notation more like the following. 

do x > y ~ x:= x - y 

y > X ~ y:= y - X 

od 

Although the program is written in a modern notation the algorithm it 

expresses is quite old . It actually dates back to the Greeks : it is 

Euclid ' s algorithm to determine the greatest common divisor of two numbers, 

x and y in this case. We can write our programs in such a clear way 

because we can make compilers that transform them into the required binary 

code. We don ' t want to know what binary code is produced , we don ' t even 

wish to know the binary code. Nor do we want the compiler to generate 

any messages that refer to the binary code . It should behave as if the 

above text is directly executed and all (error)messages should be phrased 

in terms of that program text. 

There is more to it than just clarity. The program is expressed in well

defined constructs, each construct having a well- defined meaning. That 
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allows us to prove properties of our programs by which we can gain under

standing in what is involved in programming and by which we can raise 

the confidence level of our products (cf . [2]) . This enables us to 

construct larger programs or systems in a correct way. These larger 

systems will then consist of a hierarchy of smaller systems. 

This is all very well-known, but let us now look at the following picture . 

The above is a chip layout, or at least part of it. It also expresses 

some computing system, a program if you like . As in the case of the 

binary code it is represented in the same way it can actually be found 

in the computer . It is again the lowest level description of a system. 

But it is still the level at which we design. You may actually encounter 

designers drawing these figures with colour pencils on large sheets of 

paper . In a more modern environment you may find television screens 

drawing the figures for them, but it is in terms of these p ictures that 

the designer understands his system. 

The moral of this observation should be c l ear. We wish to have an algo

rithmic notation for computing structures in which we can express what should 

happen rather than how it should happen, together with a compiler that, 

if we so desire , can generate the chip layout: a silicon compiler. 

+ + + 

There are a number of respects in which chips are new. 

three of them. 

I want to mention 
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Mathematical Aspects of VLSI Design 

(1) New balance between logic and communication . 

VLSI provides a homogeneous medium in which both logic and storage can be 

realized. The transistors come almost for free , it is the "wires" , the 

communication, that determine the cost, both in area and in speed, of the 

chip [8] . The consequence is that traditional switching theory and com

plexity theory are not directly applicable to VLSI design as they don ' t 

take communication requirements into account. 

(2) Invitation to high concurrency . 

The expensive communication and the uniform technology form an invitation 

to introduce many local computations that are executed concurrently 

and that jointly carry out the required computation. The idea is to do 

the operations where the arguments are , rather than shipping the arguments 

to processing units. 

The design of such an ultraconcurrent computation is not an easy task . 

In this respect VLSI came too early: we are beginning to understand the 

theory of sequential programming , but we still have only a rudimentary 

knowledge of concurrent programming . 

(3) Geometrical composition of constructs . 

In programming we are used to think in terms of functional composition 

of constructs , compositions like recursion and the constructs of structured 

programming. We are beginning to understand them , but now there comes an 

additional constraint : the structures have to be mappable unto the plane. 

The structures should, therefore, be regular and they somehow must '' fit" . 

Ideally, they shou l d r esemble those plane-covering drawings by M.C. Escher . 

The number of regular structures is limited . I shall mention some of them , 

more or less in the order of decreasing mappability unto the plane . 

a . vector (pipe line) 

b. ring 

c . matrix 

d . binary tree 

In a . the maxi mal distance (in number of connections) between any two ele-
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ments is n , or n - 1 , for n elements. In b. it is n/2 , in c. In 

One may wo nder whether the tree is mappable unto the 

plane. It turns out that that is not too bad. 
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The above picture must remind one of an Escher drawing. It is a binary 

tree of 5 levels and hence 31 nodes, 16 of them being leaves. Notice that 

the arcs get longer towards the root . That is fortunate as most of the 

arcs are at the lower levels, i . e. towards the leaves of the tree . 

e. boolean k-cube 

Let n be 2k , number the elements 0 through n - 1 and write every 

e lement number in binary notation. An element is connected to every other 

element whose number is at Hamming distance 1 , i . e. differs in one bit. 
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Every element has , consequently, log
2

n (=k) neighbours. This scheme is 

still mappable unto the plane , although not as well as the binary tree. 
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Like the binary tree it has a maximal distance of log
2

n . An impo rtant 

difference with the binary tree is that the cube does not have a designated 

root and this may prevent the congestion probl ems that may very well occur 

at the tree ' s root. However, the fact that the number of neighbours depends 

on the total number of elements is an awkward property: it precludes the 

modular composition of such a network. A scheme that looks like the cube 

without having this property is the following one. 

f. perfect shuffle 

Again the element numbers are coded in k (=log
2

n) bits , but now an element 

is connected to four neigbours , viz . those with which it has k - 1 consec

utive bits , i.e . all but the first all or all but the last bit, in common. 

Again the maximal distance between any two elements is log
2

n . All nodes 

are equivalent , a property it shares with the cube . The problem with the 

perfect shuffle is that I don 't know how mappable it is unto the plane. 

I have my doubts there. 

+ + + 

One of the problems with chips, nowadays, is that their initial design 

costs are very high. The consequence is that only those chips are produced 

for which a large market is expected. This phenomenon , of course, impedes 

progress. The hope is that the advent of the silicon compiler mentioned 

earlier will resolve this unfortunate situation. It will then become feasible 

to build small quantities of special purpose chips. 

More interesting is the design of highly concurrent general purpose comput

ing engines . In such a machine the computing elements will be connected 

by some pattern of "wires". How does one program such a machine? Does 

the programmer map his computation explicitly unto the connection pattern 

provided? Or does the programmer use an algorithmic notation , a programming 

language if you prefer, that guarantees the mappability of his computation 

unto the connection pattern? It seems that the latter solution is to be 

preferred. 

The ideal is to have a uniform notation for computations. From the notation 
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one should not be able to tell whether the computation is meant to be 

- a chip layout 

- a computation for a graph of communicating processes like, e.g., 

a tree machine, or 

- a computation for a sequential machine. 

The only thing expressed by the notation is the computation and there 

should be compilers for all three realizations above. 

An important problem is finding such a uniform notation for computations. 

A number of proposals have emerged recently. To mention just a few of 

them : 

-Actors [4] 

- Associons [7] , 
- Data driven nets [1] 

- Communicating sequential processes [5] 

The latter one is a rather nice notation and I would like to show an example 

of it . This particular one was written by David Gries . It expresses a 

computation of all primes less than 10000 , using 102 processes and a print 

process. The code of the print process is not shown . It is again an old 

algorithm: the sieve of Eratosthenes . 

The notation is a blend of Dijkstra ' s guarded commands [3] and synchronized 

communication. The sending and receiving of data are represented by an 

exclamation point and a question mark respectively. A matching pair of 

communication commands , one in the sending process and one in the receiving 

process, is executed simultaneously. 

Each process SIEVE(i) sends one prime (the i-th prime) to the print process 

and sieves all multiples of that prime out of the stream of numbers it 

receives from process SIEVE(i-1 ). The stream is generated by process 

SIEVE(O). 
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SIEVE (i: 1 .. 100) : : 

SIEVE (i-1)?p; PRINT ! p; 

mp:= p ; 

do SIEVE(i-1)?m ~ 

do m > mp ~ mp:= mp + 

if m = mp ~ skip 

p o d ; 

ll m < mp ~SIEVE (i+1) ! m 

fi 

od 

SIEVE(O):: 

PRINT ! 2; 

m:= 3; 

do m < 10000 ~ SIEVE(1) ! m; m:= m + 2 od 

SIEVE(101):: 

SIEVE(100)?p; PRINT!p 

What all these proposals lack is the notion of local computation . Every 

process, actor, or net element may in principle communicate with every 

other . To remedy this I propose the following concept of hierarchical 

processes, that takes locality into account . 

A process consists of a program, a state space , an initial state, 

and a (possibly empty) set of subprocesses . 

This is a recursive definition defining a hierarchy of processes. It 

thus maps naturally unto a tree . The state space is the set of all 

possibl~ states of the process. The program consists of sequencing 

primitives and instructions. Only instructions can change the state of 

the proce ss . Analogous to [ 5] communication is performed pairwise synchro

nized. If P is a subprocess of Q then Q is called the environment 

o f P . Two processes having the same environment are called coprocesses . 

Communication may take place only between coprocesses or between a process 

and its environment. The proposal is , therefore , more general than just 

a tree . In a tree we only have communication between a process and its 

environment . I am proposing to allow "horizontal" communication between 

processes with the same environment as well. The hope is that this more 
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general scheme resolves the congestion problem at roots and is still 

restricted enough to be in general well-mappable unto the plane. 

A process ' instruction is either private or public . All non-communi

cating instructions and communicating instructions with subprocesses 

are private instructions of the process . (The latter ones are public 

for the subprocesses .) Communicating instructions with coprocesses or 

with the environment of a process are public instructio ns. 

ones are private for the environment.) 

(The l atter 

A hierarchy is the only way to build complex systems with a high confi

dence level. They enjoy the nice property that we can prove assertions 

about the system by recursion over the hierarchy : assuming that the 

assertion holds for the subprocesses we prove that it holds for the 

process itself as well . During this proof we don 't look inside the 

s ubprocesses, we only use their public instructions . Nor do we look 

at the coprocesses or the environment of the process , we only use the 

process ' private instructions. That seems to be the only way to keep 

complex structures understandable . 

We are as a matter of fact quite lucky here . There are physical reasons 

[6] why we want to design hierarchical systems , but also because of 

properties like understandability and inherent simplicity we wish to 

have hierarchies . What is mathematically attractive turns out to be 

physically attractive as well . Is this a violation of Murphy ' s law? 
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