
MATHEMATICAL ASPECTS OF VLSI DESIGN

The

the

Martin Rem

Eindhoven University of Technology

and

California Institute of Technology

0 0 1 0 1 1 0 1 0 0 0 1

1 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 1 0 1 0 0 1

0 0 1 1 0 0 1 0 1 1 1 1

1 1 0 1 1 0 1 1 0 0 0

1 1 0 1 1 0 1 0 1 0 1

0 0 1 0 0 0 1 1 1 1 0

above is a computer program, written

fifties. The program is represented

in the way we would program in

in the very same way it is stored

in the computer : i t is the lowest level descript ion of a program. Now-

adays a program will be written in a notation more like the following.

do x > y ~ x:= x - y

y > X ~ y:= y - X

od

Although the program is written in a modern notation the algorithm it

expresses is quite old . It actually dates back to the Greeks : it is

Euclid ' s algorithm to determine the greatest common divisor of two numbers,

x and y in this case. We can write our programs in such a clear way

because we can make compilers that transform them into the required binary

code. We don ' t want to know what binary code is produced , we don ' t even

wish to know the binary code. Nor do we want the compiler to generate

any messages that refer to the binary code . It should behave as if the

above text is directly executed and all (error)messages should be phrased

in terms of that program text.

There is more to it than just clarity. The program is expressed in well

defined constructs, each construct having a well- defined meaning. That

55

CALTECH CONFERENCE ON VLSI, January 1979

56 Martin Rem

allows us to prove properties of our programs by which we can gain under

standing in what is involved in programming and by which we can raise

the confidence level of our products (cf . [2]) . This enables us to

construct larger programs or systems in a correct way. These larger

systems will then consist of a hierarchy of smaller systems.

This is all very well-known, but let us now look at the following picture .

The above is a chip layout, or at least part of it. It also expresses

some computing system, a program if you like . As in the case of the

binary code it is represented in the same way it can actually be found

in the computer . It is again the lowest level description of a system.

But it is still the level at which we design. You may actually encounter

designers drawing these figures with colour pencils on large sheets of

paper . In a more modern environment you may find television screens

drawing the figures for them, but it is in terms of these p ictures that

the designer understands his system.

The moral of this observation should be c l ear. We wish to have an algo

rithmic notation for computing structures in which we can express what should

happen rather than how it should happen, together with a compiler that,

if we so desire , can generate the chip layout: a silicon compiler.

+ + +

There are a number of respects in which chips are new.

three of them.

I want to mention

INVITED SPEAKERS SESSION

Mathematical Aspects of VLSI Design

(1) New balance between logic and communication .

VLSI provides a homogeneous medium in which both logic and storage can be

realized. The transistors come almost for free , it is the "wires" , the

communication, that determine the cost, both in area and in speed, of the

chip [8] . The consequence is that traditional switching theory and com

plexity theory are not directly applicable to VLSI design as they don ' t

take communication requirements into account.

(2) Invitation to high concurrency .

The expensive communication and the uniform technology form an invitation

to introduce many local computations that are executed concurrently

and that jointly carry out the required computation. The idea is to do

the operations where the arguments are , rather than shipping the arguments

to processing units.

The design of such an ultraconcurrent computation is not an easy task .

In this respect VLSI came too early: we are beginning to understand the

theory of sequential programming , but we still have only a rudimentary

knowledge of concurrent programming .

(3) Geometrical composition of constructs .

In programming we are used to think in terms of functional composition

of constructs , compositions like recursion and the constructs of structured

programming. We are beginning to understand them , but now there comes an

additional constraint : the structures have to be mappable unto the plane.

The structures should, therefore, be regular and they somehow must '' fit" .

Ideally, they shou l d r esemble those plane-covering drawings by M.C. Escher .

The number of regular structures is limited . I shall mention some of them ,

more or less in the order of decreasing mappability unto the plane .

a . vector (pipe line)

b. ring

c . matrix

d . binary tree

In a . the maxi mal distance (in number of connections) between any two ele-

57

CALTECH CONFERENCE ON VLSI, January 1979

58 Martin Rem

ments is n , or n - 1 , for n elements. In b. it is n/2 , in c. In

One may wo nder whether the tree is mappable unto the

plane. It turns out that that is not too bad.

--' , _

. -'

r
..../

_./

.)

------J

__./

T
...../

I

r
I

1

"(
I
I
I
I I I
I
I

I

r
'-"

,~ ,

r
__.,/

~

,,
l

\,_./ r
_j

The above picture must remind one of an Escher drawing. It is a binary

tree of 5 levels and hence 31 nodes, 16 of them being leaves. Notice that

the arcs get longer towards the root . That is fortunate as most of the

arcs are at the lower levels, i . e. towards the leaves of the tree .

e. boolean k-cube

Let n be 2k , number the elements 0 through n - 1 and write every

e lement number in binary notation. An element is connected to every other

element whose number is at Hamming distance 1 , i . e. differs in one bit.

INVITED SPEAKERS SESSION

Mathematical Aspects of VLSI Design

Every element has , consequently, log
2

n (=k) neighbours. This scheme is

still mappable unto the plane , although not as well as the binary tree.

59

Like the binary tree it has a maximal distance of log
2

n . An impo rtant

difference with the binary tree is that the cube does not have a designated

root and this may prevent the congestion probl ems that may very well occur

at the tree ' s root. However, the fact that the number of neighbours depends

on the total number of elements is an awkward property: it precludes the

modular composition of such a network. A scheme that looks like the cube

without having this property is the following one.

f. perfect shuffle

Again the element numbers are coded in k (=log
2

n) bits , but now an element

is connected to four neigbours , viz . those with which it has k - 1 consec

utive bits , i.e . all but the first all or all but the last bit, in common.

Again the maximal distance between any two elements is log
2

n . All nodes

are equivalent , a property it shares with the cube . The problem with the

perfect shuffle is that I don 't know how mappable it is unto the plane.

I have my doubts there.

+ + +

One of the problems with chips, nowadays, is that their initial design

costs are very high. The consequence is that only those chips are produced

for which a large market is expected. This phenomenon , of course, impedes

progress. The hope is that the advent of the silicon compiler mentioned

earlier will resolve this unfortunate situation. It will then become feasible

to build small quantities of special purpose chips.

More interesting is the design of highly concurrent general purpose comput

ing engines . In such a machine the computing elements will be connected

by some pattern of "wires". How does one program such a machine? Does

the programmer map his computation explicitly unto the connection pattern

provided? Or does the programmer use an algorithmic notation , a programming

language if you prefer, that guarantees the mappability of his computation

unto the connection pattern? It seems that the latter solution is to be

preferred.

The ideal is to have a uniform notation for computations. From the notation

CALTECH CONFERENCE ON VLSI, January 1979

60 Martin Rem

one should not be able to tell whether the computation is meant to be

- a chip layout

- a computation for a graph of communicating processes like, e.g.,

a tree machine, or

- a computation for a sequential machine.

The only thing expressed by the notation is the computation and there

should be compilers for all three realizations above.

An important problem is finding such a uniform notation for computations.

A number of proposals have emerged recently. To mention just a few of

them :

-Actors [4]

- Associons [7] ,
- Data driven nets [1]

- Communicating sequential processes [5]

The latter one is a rather nice notation and I would like to show an example

of it . This particular one was written by David Gries . It expresses a

computation of all primes less than 10000 , using 102 processes and a print

process. The code of the print process is not shown . It is again an old

algorithm: the sieve of Eratosthenes .

The notation is a blend of Dijkstra ' s guarded commands [3] and synchronized

communication. The sending and receiving of data are represented by an

exclamation point and a question mark respectively. A matching pair of

communication commands , one in the sending process and one in the receiving

process, is executed simultaneously.

Each process SIEVE(i) sends one prime (the i-th prime) to the print process

and sieves all multiples of that prime out of the stream of numbers it

receives from process SIEVE(i-1). The stream is generated by process

SIEVE(O).

INVITED SPEAKERS SESSION

Mathe ma ti c al As pects o f VLS I Design

SIEVE (i: 1 .. 100) : :

SIEVE (i-1)?p; PRINT ! p;

mp:= p ;

do SIEVE(i-1)?m ~

do m > mp ~ mp:= mp +

if m = mp ~ skip

p o d ;

ll m < mp ~SIEVE (i+1) ! m

fi

od

SIEVE(O)::

PRINT ! 2;

m:= 3;

do m < 10000 ~ SIEVE(1) ! m; m:= m + 2 od

SIEVE(101)::

SIEVE(100)?p; PRINT!p

What all these proposals lack is the notion of local computation . Every

process, actor, or net element may in principle communicate with every

other . To remedy this I propose the following concept of hierarchical

processes, that takes locality into account .

A process consists of a program, a state space , an initial state,

and a (possibly empty) set of subprocesses .

This is a recursive definition defining a hierarchy of processes. It

thus maps naturally unto a tree . The state space is the set of all

possibl~ states of the process. The program consists of sequencing

primitives and instructions. Only instructions can change the state of

the proce ss . Analogous to [5] communication is performed pairwise synchro

nized. If P is a subprocess of Q then Q is called the environment

o f P . Two processes having the same environment are called coprocesses .

Communication may take place only between coprocesses or between a process

and its environment. The proposal is , therefore , more general than just

a tree . In a tree we only have communication between a process and its

environment . I am proposing to allow "horizontal" communication between

processes with the same environment as well. The hope is that this more

6 1

CALTECH CONFERENCE ON VLS I , January 1979

62 Martin Rem

general scheme resolves the congestion problem at roots and is still

restricted enough to be in general well-mappable unto the plane.

A process ' instruction is either private or public . All non-communi

cating instructions and communicating instructions with subprocesses

are private instructions of the process . (The latter ones are public

for the subprocesses .) Communicating instructions with coprocesses or

with the environment of a process are public instructio ns.

ones are private for the environment.)

(The l atter

A hierarchy is the only way to build complex systems with a high confi

dence level. They enjoy the nice property that we can prove assertions

about the system by recursion over the hierarchy : assuming that the

assertion holds for the subprocesses we prove that it holds for the

process itself as well . During this proof we don 't look inside the

s ubprocesses, we only use their public instructions . Nor do we look

at the coprocesses or the environment of the process , we only use the

process ' private instructions. That seems to be the only way to keep

complex structures understandable .

We are as a matter of fact quite lucky here . There are physical reasons

[6] why we want to design hierarchical systems , but also because of

properties like understandability and inherent simplicity we wish to

have hierarchies . What is mathematically attractive turns out to be

physically attractive as well . Is this a violation of Murphy ' s law?

Refere nces

[1] Davis , A. L . " A maximally concurrent , procedural , parallel process

representation". University of Utah , Salt Lake City , Utah , 1978.

[2] Dijkstra , Edsger W. " A Discipline of Programming". Prentice-Hall ,

Englewood Cliffs , N. J ., 1976 .

[::] Dijkstra , Edsger W. "Guarded commands , nondeterminacy and formal

derivation of programs". Comm. ACM 18 , 8 (August 1975) , 453-457.

[4] Hewitt , Carl & Henry Baker . " Laws for communicating parallel

processes". Information Processing 77 , North-Holland , Amsterdam,

1977 , 987-992 .

INVITED SPEAKERS SESSION

Mathematical Aspec t s of VLSI Design

[51 Hoare , C . A. R. "Communicating sequential processes". Comm . ACM 21 , 8

(August 1978) , 666- 677 .

63

[6] Mead , Carver A. & Martin Rem. "Cost and performance of VLSI computing

structures" . Japan-USA Computer Conference , San Francisco , 1978 .

[7] Rem , Martin. "Associons and the Closure Statement". MC Tract 76 ,

Mathematical Centre , Amsterdam , 1976 .

[8] Sutherland , Ivan E . & Carver A. Mead. "Microelectronics and computer

science " . Scientific American 237 , 3 (September 1977) , 210-228 .

CALTECH CONFERENCE ON VLS I , January 1979

