527

HOW TO USE 1000 REGISTERS

Richard L. Sites
Department of Applied Physics and Information Science
University of California, San Diego

ABSTRACT

The advent of VLSI technology will allow the
fabrication of complete computers plus memory on one
chip. There will be an architectural challenge in
the very near future to adjust to this trend by
designing balanced architectures using hundreds or
thousands of registers or other small blocks of
memory, As the relative price of memory (vs. random
logic) drops even further, the need for register-
heavy architectures will become even more
pronounced. In this paper, we discuss a spectrum of
ways to exploit more registers in an architecture,
ranging from programmer-managed cache (large numbers
of explicitly-addressed registers, as in the Cray-1)
to better schemes for automatically-managed cache.
A combination of compiler and hardware techniques
will be needed to maximize effective register use
while minimizing transmission bandwidth between
various memories. Discussed techniques include
merging activation records at compile time,
predictive cache loading, and "dribble-back™ cache
unloading.

I. INTRODUCTION.

VLSI technology will soon make it possible to
put an entire computer plus a large number of
storage locations (perhaps 100-1000 registers) on a
single chip. On a larger scale of a computer
occupying a few printed-circuit boards, VLSI
memories will allow economical designs with a number
of localized memories that are "closer" to the
processor logic using them than the larger main
memory (Figure 1). How can computer architects make
effective use of such short-term memories?

Figure 1. A computer with two localized short-
term memories:

| processing | { processing |
! E logic ! ! logic E
I v
| st
| registers | H cache ' short term
- - memor y
| '
H main memory H long term
memory

In this paper, we first present a framework of
issuves for comparing short-term memory designs, then
we present some new techniques for facing these
issues. Our basis of comparison is a simple computer
with no short-term memory, but only long- term
main memory. All operations are done memory-to-
memory, with no intermediate registers. Our quest is
to find economical ways of adding short-term
memory(ies) to this base machine.

A generalized short-term memory cell (STM
cell) consists of three fields, some or all of which
may be physically realized: a short name, a long
name, and some data, as shown in Figure 2, In

CALTECH

CONFERENCE ON VLSI,

this model, a set of eight ordinary general-purpose
registers would be represented by eight STMs, having
short names 0-7, no long names, and one word of
data each. An ordinary 1K word cache memory with U4-
word lines (i.e, groups of four contiguous words
are moved into or out of the cache) would be
represented by 256 STMs, each having an anonymous
short name (the physical cache memory location), a
main memory address for a long name, and four words
of data. Other STMs will be presented below.

Figure 2. Generalized short-term memory cell (STM
cell):

; short | long i data H
i name | name i !

Our spectrum of discourse ranges from one
extreme of ordinary registers, whose use is totally
explicit and cmpletely visible to the machine-
language programmer, to the other extreme of
ordinary cache memory, whose use is totally
automatic and intended to be invisible to the
programmer. We will examine two middle-range
concepts of partly-explicit, partly-automatic
management, as shown in Figure 3.

Figure 3. Spectrum of discourse:

Cache of
Registers Renaming Register Sets Cache
i i H H
{-—— explicitly automatically —-——->
managed manag ed

I1. DESIGN ISSUES.

There are three major motivations for, and three
related design issues in introducing short-term
memory into a computer design:

1. Fewer address bits.

2. Faster access.

3. Lower bus bandwidth to long-term memory.

4. Load/store instructions for short-term
memory.

5. Access to the most recent data.

6. Usage density of short-term memory.

Each of these ideas is briefly explained below,

Fewer address bits. If a frequently-used data
item is moved from main memory to a general
register, then the register number (short name) can
be used to refer to that datum instead of the main
memory address (long name). This results in
instruction formats that are more compact than
formats for our pure memory-to-memory base machine,
and this compactness is a major advantage of
conventional register-machine architectures., Pure

January 1979

528

stack-machine architectures carry this concept even
further by using zero instruction bits to specify
the top of stack. An ordinary cache memory does not
save any address bits in instruction formats.

Faster access. If a frequently-used data item
is moved from main memory to a short-term memory
location, then access to that datum is often speeded
up by a factor of 4-20 (or even 1000 when
considering main memory to be a cache on a paging
drum). This faster access comes about through a
combination of faster circuit technology for the
short-~term memory cell, shorter wire delays, less
bus contention, and simpler address decoding.
Small, explicitly-addressed register files will
always offer slightly faster access than cache
designs, since the cache must always take some time
to find a match for the long name presented. Today's
fastest cache designs have two-clock-cycle access,
while registers often have one-cycle access,

Lower bus bandwidth. If most memory accesses
are to the short-term memory, then the bandwidth
needed for the long-term memory bus can be
substantially lower than in our base machine. This
allows a more economical design if multiple
processors or 1/0 devices are connected to a single
long-term memory, as in the PDP-11/60 design [1].
This may also allow use of a serial-multiplexed bus
instead of a more expensive fully-parallel bus, thus
saving wires, pins, or silicon area.

Load/store instructions. If moving data into
and out of the short-term memory is done explicitly
via software instructions, then two costs are
suffered: first, a programmer or compiler must
decide where to insert the data movement
instructions; and second, instruction bits and time
are consumed by these explicit commands. This
overhead runs counter to the address bit savings
discussed in the first point above. Cache memories
neither save instruction bits nor cost data movement
instructions. On the other hand, explicit register
loads are easy to implement and can be positioned to
pre-feteh data so that it arrives at the short-term
memory just before it is needed; demand-fetch cache
schemes cannot do this. Predictive cache hardware
is just beginning to be investigated [2], and has
recently been implemented in the Amdahl 470/V8. The
address stream presented toa cache can be viewed as
a group of interleaved arithmetic progressions., If a
simple algorithm can be used to decompose address
streams into these progressions, then a cache could
prefetch data in each progression,

There is another kind of load/store overhead
associated with using a short-term memory: when
calling a subroutine, switching tasks, or starting
an I/0 transfer, it is often necessary to save the
current machine state, or to force it to be
consistent. This means explicitly saving and
restoring all the programmer-visible registers in
a machine architecture, and perhaps explicitly
copying a cache to main memory, or purging a
translation lookaside buffer (TLB) or some otherwise
"hidden" short-term memory, As short-term memories
become larger and more prevalent, this load/store
overhead will become a dominant speed factor.
Already, machines such as the IBM 370 have introduced
partial purge instructions to avoid invalidating an
entire TLB of 128 entries, and the Cray-1 software
has to struggle with trying not to save all R+B8+6U+
AU+512 = 656 registers at every subroutine call or
interrupt [31.

ARCHITECTURE SESSION

Richard L. Sites

THE ADVENT OF LARGE, CHEAP SHORT-TERM
MEMORIES DEMANDS BETTER SOLUTIONS TO
THE LOAD/STORE OVERHEAD PROBLEM.

Stale data. If a datum is copied to a short-
term memory, and then one of the two copies is
changed, subsequent access to the other copy will
result in fetching stale data. This is obviously a
disaster. For a hardware-managed cache memory,
simple preventatives for the stale data problem
involve notifying the cache of the addresses of all
main memory cells changed by an processing or I/0
legic in any part of a computer system. This runs
counter to the lower bus bandwidth issue above, For
a programmer- (or compiler-) managed register, the
stale data problem is often prevented by storing the
register just before some operation that might
access the long-term memory copy, then reloading the
short-term memory after that operation. Such
operations are surprisingly frequent unless an
exhaustive analysis of the program is performed. For
example, if a program makes many references to one
element of an array, say A(3), then it is desirable
to keep a copy of that element in some register.
However, any other reference to the same array, such
as A(I), potentially accesses the third element, so
the register copy of A(3) must be stored before a
fetch from A(I), and reloaded after an assignment to
A(I). Depending on the language involved, it can
take extensive flow analysis on the part of the
compiler or programmer just to discover whether a
reference to A(I) 15 possible during the time that
A(3) is in a register, For example, in Fortran it is
possible that A(3) is kept in a register inside some
loop, but the loop includes a branch to some far-
away piece of program that changes A(I) then
branches back into the loop! If a compiler or
programmer is not willing to do this sort of flow
analysis, then IT IS NOT POSSIBLE TO KEEP A(3) IN A
REGISTER without being exposed to the stale data
problem. This is the fundamental reason why simple
compilers rarely make effective use of registers,
and why many assembly-language programs are
difficult to modify by someone other than the
original author. A copy of A(3) could be kept in a
cache memory with no stale data problem, since the
cache monitors all accessed addresses for a possible
mateh, and supplies the most recent data if one is
found.

The stale data problem also forces the saving
and restoring of almost all registers across a
subroutine call on register machines: continuing the
above example, the subroutine might refer to A(3),
expecting to find the most recent value in its
allocated main memory location, not in some
register.

There is one more aspect to the stale data
problem — aliases. If a long-term memory location
can be accessed via more than one name, either
because twc distinct virtual memory addresses are
mapped to the same physical address, or because twe
distinct high-level language variables in fact refer
to the same location (e.g. one i5 a global variable,
and the other is the same variable passed to a
parameter), then it is possible that neither a
hardware nor a software (compiler) mechanism will
detect that an assignment to one name should update
a copy of the other name kept in some short-term
memory. In virtual memory systems, avoiding this
problem involves either prohibiting aliases by
software convention, or building cache hardware that
compares only physical addresses, not virtual ones.
In compiler systems, aliases are either detected

How to Use 1000 Registers

through extensive analysis of a program, oOr no
copies of variables can be kept in registers across
references to global variables, parameters, pointer
assignments, subroutine calls, or a number of other
such common occurrences.

AS SHORT-TERM REGISTER MEMORIES GET LARGER,
SUBROUTINE CALLS WILL GET SLOWER, UNLESS WE
FIND BETTER SOLUTIONS TO THE STALE DATA AND
ALIAS PROBLEMS.

The stale data problem in all its forms is
probably the hardest design problem to be faced in
any system that creates copies of data. The
extensive compiler analysis required to take full
advantage of fast registers is one reason that cache
memories have become so popular -- the hardware
substitutes continual address comparisons during
execution for compile-time comparisons., Thus, we
have a trade-off: for simply-compiled code an N-word
cache memory performs better than an N-word register
memory, while for carefully-optimized code an N-word
register memory performs faster (because of the
inherently faster access mentioned above), and is
simpler to build.

Usage density. If an architecture provides 200
words of short-term memory, but most programs use
only 50 of these words, the memory is under-
utilized. One "solution" in such a situation is to
make the short-term memory smaller, but in the long
run the opposite i3 preferable — design the
software to make effective use of more short-term
memory. One example is in order: the Cray-1 provides
64 T-registers, each 64 bits wide with 1-cycle
access (compared to 1l-cycle access to a random word
in main memory). To avoid load/store overhead, some
system software uses none of these registers. One
compiler that does generate code that uses the T-
registers is the Pascal compiler at Los Alamos. It
places local scalar variables into T-registers, but
the short subroutines encouraged by clean Pascal
coding style often have fewer than five such local
variables. Thus many Pascal programs use only about
10% of the available short-term registers. For such
a machine, we need software designs that use more
registers. One such design is described in Section V
below.

IIT. CACHE MEMORIES.

We will briefly summarize how ordinary cache
memories fare with respect to the above six design
issues, Figure 4 shows a cache memory as an STM cell
associating a long name with some data.

Figure 4. Cache memory as an STM cell:

T short | long H data !
| name | name | i
Address bits. Cache memories save nothing in

instruction formats.

Access time. Faster than long-term memories,
but not quite as fast as registers built out of
identical circuits.

Bus bandwidth. As effective as registers with
the same load/store characteristies. Often cuts down
bandwidth by a factor of 10 (see e.g. [1]).

Load/store overhead. No instruction overhead,

CALTECH

except for rare "purge the cache"-type
instructions,

Stale data. The forte of cache design -- once
the virtual address alias problem is dealt with,

cache memories completely solve the software-level
alias problem.

Usage density. This is also a strong point of
cache systems — blindly doubling the size of a
cache will usually have a much better performance
improvement than blindly doubling the number of
equivalent registers.

IV. REGISTERS.

We will briefly summarize how ordinary register
memories fare with respect to the above six design
issues. Figure 5 shows a register memory as an STM
cell associating a short name with some data.

Figure 5. Register memory as an STM cell:

data i

Address bits. The forte of register designs --
instruction formats shrink.

Access time. The simplicity of explicitly and
directly addressed registers gives an inherent speed
advantage over caches.

Bus bandwidth. Similar to cache in cutting
down data accesses.

Load/store overhead. On many register
machines, 25% or more of all instructions are Loads
or Stores (see [1,p.361] or [4] for examples). The
instruction bits for these must be balanced against
the address bits saved in other instructions. Data
may be pre-fetched.

Stale data.No hardware or execution time is
"wasted" in trying to detect stale data, but
effective use of registers demands compile-time
analysis.

Usage density. Again, careful compile-time
analysis {s needed to take advantage of more
registers. Changing assembly language code to use
more registers cannot usually be done automatically.

V. TECHNIQUES FOR EFFECTIVE USE OF LARGE SHORT-TERM
MEMORIES.

Natice how complementary the above two lists are

(compared to our base machine):

cache registers

address bits
access time

bus bandwidth
load/store
stale data

usage density

I+ + +

+ 4 ¢

Can we find some way to use the best features of
both schemes? Are there techniques that are a
merging of the two extremes? How can we trade-off

CONFERENCE ON VLSI,

Ja I

January 1979

530

compile-time analysis vs. run-time analysis? Some
possible solutions are discussed below.

Renaming. We can separate the idea of short
names from the idea of fast access by defining a
RENAME operator: RENAME X,Y means that the short
name X will be used to access the long name Y until
another RENAME involving the same X occurs. RENAME
is like LOAD of a register in that subsequent
accesses to Y can use just the short name, but it
differs from a LOAD because no data movement {s
implied. Hence, we get the short name without
necessarily getting faster access. So what is the
advantage of RENAME over LOAD? Figure 6§ shows a
RENAME mechanism as an STM cell associating a short
name with a long name. A similar instruction was
implemented for the index registers of the IBM 7030
(Stretch) [5].

Figure 6. Rename memory as an STM cell:

First, RENAME can be implemented in conjunction
with a cache memory, such that RENAME gives strong
hints to the cache to load (or pre-fetch) the data
at location Y. This restores the speed improvement
of LOAD. Second, no explicit STORE instruction is
associated with RENAME -- the use of the short name
X instead of the long name Y is just discontinued at
some point in a program. This saves a little
instruction space, and it means that, for example, a
compiler does not have to do the flow analysis to
detect all branches out of a loop in order to find
all the places to insert the STORE X.Y to match a
LOAD X,Y at the beginning of the loop. Third and
most importantly, a compiler does not have to do any
alias analysis., As discussed above, when using
LOAD/STORE to keep a copy of Y in register X, all
other references to Y must be found and changed,
or X must be appropriately restored to Y and
refetched around any constructs that potentially
touch Y. With RENAME, the implementation must
ensure that references using the short name X and
the long name Y both access the same actual data.
Under these circumstances, use of the short name X
does not require any flow analysis to find other
uses or potential uses of Y,

Cache of register sets. Consider a machine
with 16 general registers in its architecture.
These registers are normally saved in main memory
when calling a subroutine, and reloaded from main
memory when returning from a subroutine. As
discussed above, we desire to build machines with
many more than 16 registers, but we don't want to
slow down all subroutine calls. Assuming that
almost all registers are in use at the point of
call, and almost all will be used by the subroutine
(so that we cannot avoid some sort of save/restore),
then one way to speed up the call linkage is to have
duplicate register sets. Say there are four sets,
0-31, and that the calling subroutine is using set
1, Then the called routine just starts using set 2,
and no data movement of set 1 to main memory is
needed. This makes the subroutine call quite fast,
and it also makes the linkage overhead no longer
proportional to the number of registers. When the
subroutine returns, the machine just switches back
from set 2 to set 1.

There are two flaws in the above scheme that
need fixing. First is the obvious question of how

ARCHITECTURE SESSION

Richard L. Sites

to do the fifth nested subroutine call. The answer
is that after switching from register set 1 to
register set 2, a cache-like mechanism i3 needed to
dribble-back register set 1 to the place in main
memory that it would have gone in the simple
machine. Dribble-back means that the requisite 16
STOREs are queued at a low priority, so that
whenever the running subroutine (using set 2) does
not need a bus cycle to main memory, one of the
queued stores is done, After the first 16 unused
memory cycles pass, all of register 1 is properly
stored in main memory, so more nested subroutine
calls can reuse that register set. This scheme
stands in stark contrast to existing machines that
provide multiple register sets, such as the RCA
Spectra 45 (IBM 360-like), or scme models of the PDP-
11, which have four register sets, but they have
dedicated uses (operating system, kernel, real-time
interrupt, and all user code is a typical allocation
of the four), and have no automatic recycling of
data to main memory.

The dribble-back technique also stands in stark
contrast to the usual STORE MULTIPLE of registers at
time of call, because the called subroutine need not
wait until the stores finish before starting its
execution. In fact, by making the priority of
dribble-back stores lower than that of other stores,
the register saving always uses otherwise wasted bus
cycles, i.e., the register saving is completely
free in terms of execution time. Since register
save/restore i3 already a significant overhead on
many machines with general registers, and since the
trend is toward more registers and more short
subroutines as a programming style, dribble-back
will become even more significant for saving
subroutine linkage time. The Amdahl 470/V6 already
uses a form of dribble-back to implement the PURGE
TLB instruction (which must invalidate all 128
locations in the virtual address lookaside buffer)
[(6]. The implementation involves a duplicate set of
VALID bits for the TLB, so the PURGE TLB instruction
simply switches to the other set, which has
previously all been set to "invalid", During the
next 128%3 machine cycles, each bit of the just-used
set (s changed to "invalid®". 3So long as two PURGE
TLB instructions are separated by at least that many
machine cycles, the implementation is extremely fast
(in direct contrast to the IBM 370/168
implementation). This matches the operating system
software, which only rarely executes a PURGE TLB. If
a second such instruction is issued too soon, the
470/V6 CPU just waits until the previous
invalidation cycle is finished.

A subroutine return can simply start using a
previous register set, unless that set was dribbled-
back to main memory then overwritten with registers
for a more deeply nested subroutine call. In this
case, the registers need to be reloaded from the
data in main memory. 1In general, it is easy to keep
a COPY bit associated with each register set, such
that the COPY bit is on if the register set is an
exact copy of the corresponding data in main
memory. The copy bit is turned on when the last
register has been dribbled-back to main memory, and
it is turned off again if a nested call reuses that
set. It is also turned on when the last register is
reloaded from main memory. Then subroutine calls
and returns can just use a register set if its COPY
bit is on, and must wait for the main memory data
movement to catch up if the bit is off.

Consider a deep subroutine nest of A calls B
calls C calls D calls E calls F, with four sets of

How to Use 1000 Registers

registers. A uses set 0, B set 1, C set 2, D set

3, and E uses set 0 after all of A's data is
dribbled-back to memory. Similarly, F uses set 1
after B's data is saved. When F returns to E, it is
possible to start reloading B's data, so that when C
is later ready to return to B, there will be no
delay. On the other hand, if the very next
instruction after F's return to E is a call from E
to G, set 1 is needed for G to use, and any of B's
data loaded into set 1 is wasted effort.

The thoughtful reader will have noticed that we
are just running a top-of-stack buffer for a stack
of register sets. For such buffers, an amount of
hysterisis is useful: once a reglster set is
stored, do not reload it immediately. Instead, wait
until the probable time to reload matches the
probable time until the reloaded data will be
needed. In the case of nested subroutine calls
above, we would like to start reloading B's
registers into set 1 exactly 16 main memory cycles
before C returns to B (assuming no outside access
inter ference). In general, we cannot exactly
predict when to start reloading B's data, but we
can perhaps safely wait until E returns to D and D
returns to C. Similarly, we could apply hysterisis
at the other end of the buffer by not even starting
the stores of A's registers until 16 cycles before
D calls E, 1.e. until just before that register set
will need to be reused by a deeper subroutine.

The major effect of introducing some hysterisis
along with multiple register sets is that we
diminish then needed bandwidth to main memory. In
fact, instead of asking for a given bus how much
bandwidth must be supplied, the computer designer
could ask "here is a fixed bandwidth: how much short-
term memory and hysterisis must be supplied in order
to exceed that bandwidth only rarely?" If we delay
storing a subroutine's registers until, say, two
more levels of subroutine call have been done, then
we never even bother to save registers of a
subroutine that only calls one level down then
returns. For a software system that rarely nests
calls three deep, it would be possible to run for
hours without spending any time or bus bandwidth
saving and restoring registers, yet the occasional
call chain that is 12 deep is handled gracefully,
and never with more data transfer than the simple
scheme with only one register set.

A few paragraphs back, we mentioned two flaws.
The second flaw is that after subroutine A calls B,
but before A's registers are dribbled back to main
memory, B may try to fetch from the place in main
memory that is sy sed to contain one of A's
registers. Alternately, after A's registers are all
safely copied to main memory, B may change the
contents of one of those memory locations. If B
then returns to A without calling anyone else, the
simple description above would have A use the stale
data in its register set, without ever reloading the
changed word in main memory. The solution to this
flaw involves using standard cache techniques: the
unused register sets that contain copies of main
memory data are exactly cache locations, and all
accesses to the corresponding main memory locations
must update the cache also. Thus, four register
sets look like a four-line cache, with a main memory
address tag associated with each line (register
set), and with an assoclative lookup of these four
tags whenever main memory is referenced. This
scheme effectively ties together the two ends of our
short-term memory spectrum.

VI. CONCLUSIONS AND FUTURE RESEARCH,

Registers are simple to build, fast, and small
numbers of them are easy for programmers and
optimizing compilers to use effectively. Cache
memories are more complicated, but easier to use.
Providing many registers is an attractive way for
the hardware designer to use VLSI technology to
support economical short-term memory. Providing a
combination of hardware alias resolution and stale
data prevention via cache-like address comparisions,
along with many registers, may be the best total-
system design for effective use of 1000 or more
register locations.

Cached register sets are particularly attractive
for implementing fast subroutine calls, but the
same i{deas also apply to implementation of hardware
stacks or queues (contrast the Burroughs 7700, with
32 top-of-stack buffer registers, the automatic
saving and restoring of which significantly slows
down subroutine calls [7]), and to the
implementation of task switching. In the latter
case, complete duplicate machine states could be
kept in multiple register sets.

One line of future research is to measure
existing software to discover how much short-term
memory hardware would be useful, and what are the
parameters for managing it (for example, carefully
gathered statistics on dynamic subroutine
call/return activity could help decide an optimum
number of register sets, plus the parameters of the
hysterisis algorithm).

A second line of research is just the converse
-- given a fixed arbitrary amount of short-term
memory hardware, how can software be automatically
re-done to take full advantage of that amount? If
only a few levels of subroutine nesting can be
handled quickly, automatic insertion of subroutine
code inline at the point of call would decrease the
number of levels of call in a software package. If
many subroutines have only 5 local variables
available for short-term storage and a machine
provides 30 short-term registers, then a compile-
time mapping of the local variables from six
subroutines into one merged activation record [3]
could provide a much better match to the machine --
the usage density goes way up, and calls between
subroutines in such a group would not need to save
or restore registers at all: each subroutine just
uses a different five of the 30 registers.

Both lines of research must be pursued
simultaneously if we are to take full advantage of
the short-term memory architectures that VLSI
technology makes economical.

REFERENCES

[1] C.G. Bell, J.C. Mudge, and J.E. McNamara,
Computer Engineering, chapter 13, Digital
Press, MEDPE WK, i978-

[2] A.J. Smith, "Sequential Program Prefetching in
Memory Hierarchiea", IEEE Computer, December
1978, pp. T-21.

[3] R.L. Sites, "An Analysis of the Cray=1
Computer”, Fifth annual symposium on Computer
Architecture, April, 1978, pp 101-106.

531

CALTECH CONFERENCE ON VLSI, January 1979

532

[4] R.P. Blake, "Exploring a Stack Architecture",
IEEE Computer, May 1977, pp. 30-38.

[5) IBM Corp., Reference Manual: 7030 Data
Processing System, form A22-6530, 1960.

[6] Amdahl Corp., Amdahl 470/V6 Hardware Reference

Manual, 1976.

[7] E.I. Organick, Computer System Organization,
Academic Press, New York NY, 1973, p. 91, 101.

ARCHITECTURE SESSION

Hichard L.

Sites

