
HOW TO USE 1000 REGISTERS

Richard L. Sites
Department of Applied Physics and Information Science

University of California, San Diego

ABSTRACT

The advent or VLS! technology will allow the
fabrication or comple te computers plus memory on one
c hip. There will be an architectural challenge in
the very near future to adjust to this trend by
designing balanced archi tectures using hundreds or
thousands or reg lsters or other S!lall bloeks of
memory. As the relative price or memory (vs. random
log !e) drops even further, the need for register
heavy architectures will become even more
pronounced. In this paper, we discuss~ spectrum or
ways to exploit more registers In an architecture,
ranging from progra11111 er-managed cache (large numbers
or explicitly-addressed registers, as In the Cray-1)
to better schemes for autanatleally...,anaged eaehe.
A combination of compiler and hardware techniques
will be needed to maximin effective register u•e
while minimizing t ran omls•lon bandwidth between
variou• memorle•. Dlscu.,ed technique• Include
merging activation record• at compile time,
predictive cache loading , anrl "dribble-back" cache
unload lng.

!. INTRODUCTION.

VLSI technology will soon make It possible to
put an entire COI'I'tputer plus a large nl.lftber of
•torage locations (perhaps 100-1 000 register•) on a
single chip. On a larger •cale of a computer
occupying a few pr1nte6-clrcult board•. VLSI
~emorles will allow economical designs with a number
of localized memorie~ that are "clo~er" to the
proce•sor logic using them than the larger main
memory (figure 1). Ho w can computer architects m~ke
effective use of such short-term memories?

figure 1. A computer with two localized~
term memories:

1 processing J
, logic ,

--------------' '
: registers

\ processing i
, logic ,

cache

main ml!mory

short term
memory

long term
menor y

In this paper, we first pre•ent a framework or
issues for compar ing short-term memor y designs, then
we present 30me new techniques for facing these
t .. ues. Our basis or comparison is a simple computer
with no short-term memor y, but only long- term
main memory. All operation• are done memory-to
memory, with no Intermediate registers. Our que•t i•
to find economical way• of adding •hort-term
memory(le•l to thi• ~ ~·

A generalized •hort-term memory cell (STH
cell) consist• or three field• . some--or-an or whi ch
may be physically realized: a •hort ~·a~
~· and some data, •• •hown in flRure 2. In

this model, a set or eight ordinary general-purpose
registers \ooOu ld be represented by eight STMs , hav lng
•hort n.,.e• 0- 7 , no long names, and one word or
data each. An ordinary 1K word cache memory with q_
word line• (I.e. groups or four contiguous wor d•
are moved into or out or the cache) would be
represented by 256 STMs, each having an anonymou•
•hort name (the physical cache memory locet!on), a
main memory addreos for a long n.,.e, and four words
of data. Other STM• will be pre•ented below,

figure 2. Generalized 3hort- tenm memory cell (STM
cell):

Our spectrum of discour•e ranges from one
extreme of ordinary regi•ters, whose u•e Is totally
explicit and a~~pl.,tely visible to the machine
language programmer , to the other extreme or
ordinar y cache memory, who•e u•e i• totally
auta.atic and Intended to be invisible to the
programmer, We will examine two middle-range
concepts of partly- explicit, partly- auta.at!c
management , as •ho wn In figure 3.

figure). Spectrum of discour•e:

Registers Ren..,lng
Cache of

Reg l•ter Set• Cache

:-------------:-----------:------------:
<----explicitly

managed

II. DESIGN ISSUES .

automatic ally ----)
managed

!here are three major motivations for, and three
related de•lgn ls•ue• In Introducing •hort-term
memory i nto a computer de•lgn:

1. fewer address bit•.
2 . faster access.
3. Lower bus bandwidth to long-term memory.
q, Load/store Instructions for short-term

memory.
5. Access to the most recent data.
6. Usage density or short-term memory.

Each of the•e Idea• 1s briefly explained below.

fe wer addreos bit•. If a rrequently-u•ed dat•
ltemismov~""iiiafn memory to a general
regi•ter, then the register number (short name) c an
be u•ed to refer to that datum Instead of the main
memory addre•• (long name). Thi• re•ults In
in•tructlon formats that are more compact than
formats for our pure memory-to-memory base machine ,
and thlo compactneos i• a major advantage of
conventional regt~ter-machine arch1tecturPs . Pure

527

CALTECH CONFERENCE ON VLSI, January 1979

528

stack-machine architectures carry this concept even
further by using zero instruction bits to spf'clfy
the top of stack. An ordinary cache memory does not
save any address bits In Instruction fonnats.

faster access. If a frequently-used data Item
is m~r~n memory to a short-term memory
location, then access to that datum Is often speeded
up by a factor of ~-20 (or even 1000 when
considering main memory to be a cache on a paging
drll'l'l). This faster access canes about through a
combination of faster circuit technology for the
short-term memory cell . shorter wire delays , less
bus contention , and simpler address decod lng.
~dl, explicitly-addressed register files will
always offe r slightly faster access than cache
designs . since the cac he must always take some time
to find a match for the long name presented. Today' s
fastest cache designs have two-clock-cycle access,
while registers often have one-cycle access.

!.ower bus bAndwidth. If most memory accesses
are to theShort-term memory, then the bandwidth
needed for the long-term memory bus can be
s ubstantially lower than in our base machine. This
allows a more economical design if multiple
processors or I/0 devices are connected to a single
long-term memory, as in the PDP-11/60 design [1).
This may also allow use of a serial-multiplexed bus
Instead of a more expensive fully-parallel bus, thus
saving wires, pins. or silicon area.

l.oad/store instructions. If moving data into
and out of the short-ter~ memory Is done explicitly
via .software instructions, then t\oi!O costs are
suffered: first, a progr ammer or compile r must
decide lotlere to Insert the data movement
Instructions; and second. Instruction bits and time
are consumed by these expllelt commands. This
overhead runs counter to the addr ess bit savings
discussed In the first point above . cache '!lemortes
neither save instruction bit s nor cost data movement
Instructions. On the other hand , explicit register
loads are easy to Implement and can be positioned to
pre-fetch data so that It arr ives at the short-ter'!l
'llemory just before it is needed; demand-fetch cache
schemes cannot do this. Pred lctlve cache hardware
Is just beginning t o be Investigated [?] . and has
recently been Implemented in the Amdah l ~70/V8. The
address stre~ prpsented toa cache can b~ viewed as
a group of interleaved arithmetic progressions. If a
simple algorithm can be used to decompose address
str~Bms into thes~ progr~ss1ons 0 then a each~ could
prefetch data In each progression.

There is another kind of load/store overhead
associated with using a short-term memory: when
calling a subroutine , switching tasks. or starting
an l /0 transfer, It is often necessary to sav~ the
current machine state. o r to force it to be
consistent. This means explicitly saving and
restoring all the programmer-visible register s in
a machine architecture, and perhaps explicitly
copying a cache to main memory . or purging a
translation lookasi1e buffer (TLBl or some otherwise
11 hit1den" short-term memory. As short-term memories
become larger and more prevalent , this load/store
overhead will become a dominant spe~factor.
Already . machine< such as the IBM 370 have Introduced
partial purge Instructions to avoid invalidating an
entire TLB of 128 entries, and the Cray-1 software
has to struggle with trying not to save all ~ ·8·6~ .
6~•512 = 656 registers at every subroutine call o r
Interrupt [3] .

ARCHITECTURE SESSION

Richard L. Sites

THE ADVENT Of LARGE, CHEAP SHORT-TERM
HEMORIES DEHANDS BETTER SOLUTIONS TO
THE LOAD/STORE OVERHEAD PROBLE~.

Stale data. If a datllll Is copied to a short
term liieiiiOry:-and then one of the two copies Is
changed, subsequent access to the other copy will
result In fetching stale data. This is obviously a
d 1 saster. For a hardware~anaged c ache memory,
simple preventatives for the stale data problem
Involve notifying the cache of the addresses of all
main memory cells changed by an processing or IIO
log lc In any part of a computer system. This r uns
coun ter to the lower bus bandwidth issue above. for
a prograrm~er- (or compiler-) managed reg lster, the
stale data problem Is often prevented by storing the
register just before some operation that might
access the long- term memory copy, then reloading the
short-term memory after that operation. Such
operations are surprisingly frequent unless an
exhaustive analysis of the program Is perfonned. for
exEII'I'Iple , if a program makes many references to one
element of an array, say A(3l, then It is desirable
to keep a .££EX. of that element in SO'IIe register.
However, any other reference to the same array o such
as A(I) , potentially accesses the third element, so
the register copy of A(3) must be stored before 3

fetch from A(I), and reloaded after an assignment to
A([). Depending on the language Involved, It can
take extensive flow analysis on the part of the
compiler or programmer just to discover wh~ther a
reference to A(I l Is possible during the time that
A(3l is in a reglster-:-ro;=-example, In fort ran it is
possible that A(3) Is kept In a register Inside some
loop , but the loop includes a bronch to some far
awa y piece of program that changes A<Il then
branches back Into the loop! I f a compiler or
programmer is not willing to do this sort of flow
analysis, then IT IS NOT POSSIBLE TO KEEP A(J) IN A
REGISTER without being exposed to the stale data
problem. This Is the fundamental reason lotly simple
compilers rarely make effective use of registers,
and lotly many assembly-language programs are
difficult to modify by someone other than the
original author. A copy of A(Jl could be kept In a
cache memory with no stale data problem, since the
cache monl tors all accessed addresses for • possible
match. and supplies the most recent data 1 f one Is
found.

The stale data problem also forces the saving
and restoring o f almost all registers across a
subroutine call on register machines: continuing the
above ex ample, the subroutine m l g ht refer to A<3l ,
expecting to find the most recent value in its
allocated main memory location, not in some
register.

There Is one more aspect to the stale data
problem-- aliases. If a long-term memory location
can be accessed via more than one name, either
because two distinct virtual memory addresses are
mapped to the same physical address. or because t~•
distinct high-level language variables in fact refer
to the same location (e.g . one is a global variable ,
and the other 1s the sane variable passed to a
parameter) , then it Is possible that neither a
hardware nor ~ soft ware (compiler) mechan!S'!I wilt
detect that an assignment to one name should update
a copy of the other name kept In some short-term
memory. In virtual memory systems, avoiding this
problem Involves either prohibiting aliases by
software convention , or building cache hard ware that
compares only physical addresses . not virtual ones.
In compiler systems , aliases are either detected

How to Use 1000 Register s

through extensive analysis o r a program, o r no
copies of var iables c an be kept in registers across
references to global variables. parameters. pointer
assignments, s ubroutine calls, or a number of other
such common occurrences .

AS SHORT-TERM REGISTER MEMORIES GET LARGER ,
SUBROUTINE CALLS WILL GET SLOWER. UNLESS WE
FIND BETTER SOLUTIONS TO THE STALE DATA AND
ALIAS PROBLEMS .

The stale data pro blem in all its forms !s
probably the hardest design problem to be faced In
any system that creates co pies or data. The
extensive compiler analysis required to ta ke full
advantage of fast registers is one reason that c ache
rru~mor ies have become 30 popular - - the hardware
substitutes continual address comparisons during
execut io n fo r com pile- time c omparisons. Thus . we
have a trade-<>ff: for simply-compiled code an N-word
cache memory performs better than an N-wo rd register
memory, while for carefu lly-<> pt 1mi zed ~ode •n N- word
register m""'ory per forms faster (bec•use of the
Inherently raster access mentioned above). and Is
simpler to build.

Usage density. I f an architecture provides ?.00
words o f short-term meooory. but most progr ams use
o nly 50 or these words, the memory is under
utilized. One "sol ution" in such a situation is to
make the short-term memory smaller, but in the long
run the opposite is preferable -design the
so ftwar e to make effective use o f "'ore short-term
memory. One ex,..ple is in order: the Cray-1 provides
6U T- r egisters, each 64 bits wide with 1- cycle
access (compared to 11-cycle access to a random word
in main memory). To ovoid load/store overhead , some
system :10rtware uses none of these r~gi sters. One
compiler that does generate code that uses the T
registers Is the Pascal compiler at Los Alamos. It
places local scalar variables into T- r egister s, but
the short subroutines encouraged by clean Pascal
coding style o ften have fewer than five such local
variables. Thus many Pascal programs use o nly about
lOS or the available short-term registers. For such
a machine, we need software designs that use more
registers. One such design Is described In Section V
b elo w.

III. CACHE MEMORIES.

We will briefly Sl.lllmarlze ho w ordinary cache
memories fare with respect to the above six design
Issues. Fig ure 4 sho ws a cac M memory as an STM cell
associating a long name with some data.

Figure 4. cache memory as an STM cell:

, short

' name
long
name

data

Address bits. Cache memories save nothing in
inst;::u;;tiOn formats.

Ac cess time. Faster than long-term memories,
but not quiteas fast as registers built out o r
Identical circuits.

Bus bandwidth. As effec tive as registers with
the me load/store character istics. Often cuts down
bandwidth by a factor of 10 (see e.g. (1]).

Load/ stor e overhead. No Inst ruction overhead,

except for rare "purge the cache"-type
1 nstructions.

Stale data. The forte or c ache design - - once
the v lrtual address alias probl em is dealt with .
cache memories completely solve t he software-level
alias problem.

Usage density. This !s also a strong point or
c ache systems - blindly doubling the sl ze or a
cache will usually have a much better performance
Improvement than bl1n<ll y doubling the n""ber or
equivalent registers.

IV. REGISTERS.

We will briefly s....,marlze how ordinary register
memories rare with respect to the above six design
Issues. Figure 5 shows a register memory as an STM
c ell associating a shor t name with some data.

Figure 5. Reg !ster memory as an STM cell:

data

Address bits. The forte of register desl~ns -
Instruction fo rmats shrink.

Access time. The s!mplic I ty o r ex pllc 1tl y and
d l rectly addressed r~gl sters gives an lnher~nt speed
advantage over caches.

Bus bandwidth . Similar to cache in cutting
down-aata accesses.

Load/store overhead. 01 many register
machines . 25S o~r al l Instructions are Loads
o r Stores (see (l,p. 35 11 or (4] for examples). The
Instruction bits for these must be balanced a~alnst
the address bits saved In other instructions . Data
may be pre-fetched.

Stale data.No hardware o r execution time Is
"wasted" intr"ying to detect stale dat~t, but
effective use or registers d""'ands compile-t!"'e
analysis.

Usage density. Aga in , c areful complte- ti~e
analysis is needed to take advAntage of more
reg !sters. Chang !ng assembly language cod e to use
more registers cannot usually be done automatically.

V. TECHNIOUES FOR EFFECTIVE USE Of LARGE SHORT-TERM
MEMORIES.

Notice how complementary the above two lists are
(compar ed to our base machine):

address bits
acces:s time
bus band w!d th
load /store
stale data
usage density

cache reg lster s

Can we find some way to use the best features or
both schemes? Ar e there techniques that are a
merging of the two extremes? How c an we trade-<>ff

CALTECH CONFERENCE ON VLS I, January 197 9

530

compile-time analysis vs. run-time analysis? Some
possible solutions are discussed below.

Ren•lng. We can separate the Idea of short
nnes from the Idee of fast access by defining a
RENAME operator : RENAME x. Y means that the short
nne X wi ll be used to access the long na .. Y until
another RENAME Involving the same X occurs. RENAME
Is like LOAD of a register In that subsequent
accesses to Y can use just the short nane, but 1 t
differs rroro a LOAD because no data 10ovement Is
Implied . Hence. we get the short name without
necessarily setting faster access. So what Is t he
advantage of RENAME over LOAD? figure 6 sho ws a
RENAME mechan!SII as an STH cell associating a short
name with a long nMe. A similar Instruction \4S

Implemented for the index resisters o f the I~ 7030
(Stretch) (5).

Figure 6. Rena10e memory as an STII cell:

: short : long data
: name : name

First, RENAME can be Implemented i n conjunction
with a cache memory, such that RENAHE gives strong
hints to the cache to load (or pre-fetch) the data
at location Y. This restores the speed Improv ement
of LOAD. Second, no explicit STORE instruction Is
associated with RENAME-- the use or the short name
X Instead of the long nMe Y Is Just discontinued at
some point In a progr... This saves a little
instruction :space, and it means that, ror ex•ple, a
compiler does not have to do the now a nalysis to
detect all branches out of a loop In order to find
all the places to Insert the STORE X. Y to match a
LOAD X,Y at the beginning of the loop. Third and
most Importantly, a compiler does not have to do any
alias anal ysls. As d lscussod above, when using
LOAD/STORE to keep a copy of Y In register X, all
other references to Y must be round and chansed,
o;:-y must be appropr latl!l y restored to Y and
refetchod around any constructs that potentially
touch Y. With RENAHE, the Implementation must
ensure that references using the short name X and
the long nne Y both access the same actual data.
Under these circ'i:m'Stances, use or the short nane X
does not require any flow analysis to find other
uses o r potential uses of Y.

Cache £I register ~. Consider a machine
with 16 general registers In Its architecture.
Then registers are normally saved In main memory
when cal ling a subroutine, and reloaded CTom m•ln
memory when returning rrom a subroutine. As
discussed above. we desire to build machines with
many "'or~ than 16 registers. but we don't want to
slow down all subroutine calls. Assuming that
almost all registers are in use at the point of
call , and atmost all will be used by the subroutine
(so that we cannot avoid sane sort o f save/ restore).
then one way to speed up the c all linkage Is to have
duplicate register~· Say there are rour sets,
0-1, and that the callin~ subroutine is using set
1. Then the c alled routine just starts using set 2,
and no data movement or set t to main memory is
needed. This makes the subroutine call quite fast,
and it also makes the linkage overhead no longer
proportional to the number of resisters. When the
.sub routine returns, the machine just .switches baek
from set 2 to set 1.

Thf!re are t\10 flaws in the above .seheme that
need fiXLng . First Is the obv1ous question o f ho w

ARCHITECTURE SESSION

Richard L. Sites

to do the fifth nested subroutine call. The answer
is that after switching from register set 1 to
register set 2. a coche-llke mechaniSII i s needed to
dribble-back register set 1 to the place In main
memory that it ..,uld have gone In the simple
machine. Dribble-back means that the requisite 16
STOREs are queued at a low priority. so that
whenever the running subrout in e (using set 2) does
not need a bus cycle to main memory, one of the
queued stores Is done. After the first 16 unused
memory cycles pass, all of resister 1 Is properly
stored in main memory, so more ne.sted subroutine
call s can reuse that register set. This scheme
stands In st•rk contrast to existing machines that
provide multiple register sets, such ~s the RCA
Spectra ij5 (I~ 360-llke). or sone models of the PDP-
1 1, which have four register sets, but they have
dod lcatod uses (operating system, kernel, real-time
interrupt, and all user code Is a typic al allocation
of the four). and have no automatic recycling of
data to m•in memory.

The dribble-back technique also stands In stark
contrast to the usual STORE MULTIPLE of registers at
time of call, because the called subroutine need not
walt until the stores finish before starting its
execution. In fact, by making the priority of
dribble-back stores lower than th•t of other stores,
the register saving always uses otherwise wasted bus
cycles, I.e. the register saving Is coropletely
free In terms of execution time. Since reg ister
save/restore Is already a significant overhead o n
m~ny machines with general reJ!lsters, •nd since the
trend is toward more r~i.sters and more short
subroutines as a programming style, dribble-back
will become even more significant for saving
subroutine linkage time . The Amdahl ij70/V6 alre*'y
uses a form of dribble-back to implement the PURGE
TLB Instruction (which must lnvall~ate all P~
locations In the virtual address lookasirte buffer)
(6). The implementation Involves a duplicate set of
VALID bits for the TLB . so the PURGE TLB instruction
simply switches to the other set, which has
previously all been set to "invalid". During the
next 128° 3 machine cycles , each bit of thl! just- use<!
set Is changed to "invalid". So long as t.., PURGE
TLB instructions are separated by at least that many
machine cycles , the implementation Is extremely fast
(in direct contrast to the IBH 370/168
Implementation). This matches the operating system
software, which only rarely executes a PURGE TLB. If
a second such Instruction Is Issued too soon, the
ij7Q / V6 CPU just waits until the previous
invalidation cycle Is finished.

A sub routine return can simply .start using a
previous register set, unless thot set was dribbled
back to main memory then overwritten with registers
for a more deeply nested subroutine call. In this
case. the reg tsters need to be reloaded from th"
data In main memory. In general, it i s easy to keep
a COPY bit assoclatPd with each r egister set, such
that the COPY bit IS on if the reg t ster set Is an
exact copy o f the corresponding data i n main
memory. The ~opy bl t is turned on when ~he last
rl!gister has been dribbled-back to main memory, and
it is turned orr again if a nested call reuses that
set. It is al30 turned on when the last register ts
reloaded rrom main memo,.y. Then subroutine ealls
and returns can just use a reg lster set if 1 ts COPY
bl t is on, end must walt for the moln memory data
movement to catch up if the bit is off.

Consider a deep subroutine nest of A calls B
call s C calls D calls E calls f, with four sets of

How to Use 1000 Registers

registers. uses set 0. B set 1. C set 2, D set
3. and E uses set 0 after all of A's daU !s
dribbled-back to memory. Similarly, fuses set 1
after B' s data is saved. When f r eturns to E, 1 t ls
possible to star t reload !ng B' s data, so that when C
!s later ready to return to B, there will be no
delay. On the other hand. H the very next
Instruction after f's return to Eisa call from E
to G, set 1 is needed for G to use, and any of B' s
data loaded into set 1 is wasted effort.

The thoughtful reader will have noticed that we
are just running a top...of- stack buffer for a stack
of register sets . For such buffers, an anount. of
hysteris!s !s useful: once a register set !s
stored, do not relo8d !t immediately. Instead, wait
until the probable time to reload matches the
probable time until the reloaded data will be
needed. In the case of nested subroutine calls
above, we would like to start reload !ng B' s
registers into set 1 exactly 16 main memory cycles
before C returns to 8 (assLming no outside access
interference). In general. we cannot exactly
predict when to start reloading B's data, but we
can perhaps safely wait until E returns to D and D
returns to C. Similarly, we could apply hysterls!s
at the other end of the buffer by not even starting
the stores of A's registers until 16 cycles befor e
D calls E. 1 .e. until just before that register set
will need to be reused by a deeper subroutine.

The major effect of intr oducing sane hysteris!s
along with multiple reg !ster sets is that we
diminish then needed bandwidth to main memory. In
fact. instead of asking for a given bus how much
bandwidth must be suppl led, the computer designer
could ask "here !s a fixed bandwidth: how much short
term memory and hyster!s!s must be supplied in order
to exceed that bandwidth only rarely?" If we delay
storing a subroutine's registers until . say, two
more levels of subroutine call have been done , then
we never even bother to save registers of ;~
subroutine that only calls one level down then
returns. For a sort.ware system that rarely nests
calls three deep, it would be possible to run for
hours without spending any time or bus b~ndwldth
saving and restoring registers . yet the occasional
call c hain that Is 12 deep is handled gracefully,
and never with more data transfer than the simple
scheme with only one register set.

A few paragraphs back, we mentioned two flaws.
The second flaw !s that after subroutine A calls B,
but before A' s registers are dribbled back to main
memory, B may try to fetch from the place in main
memory that !s supposed to contain one of A's
registers. Alternately, after A's registers are all
safely copied to main memory, B may change the
contents of one o f those memory locations. If B
then returns to A wi thout callinR anyone else , the
simple description above would have A use the stale
data in its register set, without ever reloading the
changed wrd !n main memory. The solution to this
flaw involves us i ng standard cache techniques: the
unused register sets that contain copies of main
memory data are exactly cache locations, and all
accesses to the corresponding main memory locations
must update the cache also. Thus, four register
sets look like a four-line cache, w! th a main memory
address tag associated with each line (r egister
set), and with an ossoc!atlve lookup of these four
tags whenever main memor y is referenced. This
scheme effect! vel y ties together the t w ends of our
short- term memory spectrum.

VI. CONCLUSIONS AND fUTURE RESEARCH.

Registers are simple to build, fast, and snall
n umbers of them are easy for programmers and
optimizing compilers to use effectively. Cache
menorles are more complicated. but easier to use.
Providing many registers Is an attractive way for
the hardware designer to use VLSI technology to
support economical short-term memory. Providing a
combination of hardware alias resolution and stale
data prevention via cache-like address canparls!ons,
along with many registers, may be the best total
system design for effective use of 1000 or more
register locations .

Cached register sets are particularly attractive
for implementing fast subroutine calls, but the
same Ideas also apply to implementation of hardware
stacks or queues (contrast the Burroughs 7700, with
32 top.-of-stack b uffer registers, the automatic
saving and restoring of which significantly slows
down subroutine calls [7)) , and to the
implementation of task s witching. In the latter
case, complete duplicate machine states could be
kept in multiple reg! ster sets.

One line of future research ls to measure
existing software to discover how much short-tern
memory hardware would be useful, and what are the
parameter s for managing !t (for example, car efully
g~thered statistics on dynamic subroutine
call/return activity could help decide an optimtD
number of register sets, plus the parameters of the
hysterisis algorittwn) .

A second line of resear ch is just the converse
given a fixed arbitrary amount of short- term

:nemory hardware. how can software be automatically
re-done to take full advant•ge of that amount? If
only a few levels o f subroutine nesting can be
handled quickly , automatic Insertion of subroutine
code lnl!ne at the point of call wuld decrease the
number of levels of call In a software packag... If
many subroutines have only 5 local variables
available for short-term storage and a machine
provides 30 short-term registers, then a compile
time mapping of the local variables from sh
subroutines into one merged activation~ [3)
could provide a much better match to the machine -
the usage density goes way up, and calls between
subrouti nes in such a group wuld not need to save
or restore registers at all: each subroutine just
uses a different five of the 30 registers.

Both lines of r esear ch must be pursued
s!mul taneously 1 f we are to take full advantage of
the short-term memory architectures that V~'I
technology makes economical.

REFERENCES

[1) C.G. Bell, J.C. 1'\ldge, and J.E. HcNamara.
Computer Eng !neerln' , chapter 13. Dig! tal
Press, Bed ford RA, 978.

[21 A.J. 9o!th, "Sequential Program Prefetch!ng in
Hemory Hierarchies", IEEE Computer, December
1978 . pp. 7-21.

[3) R.L. Sites , "An An alysis of the Cray- 1
Computer•, fifth ~ symposiua ~Computer
Architecture , April, 1978. pp 101 - 106 .

531

CALTECH CONFERENCE ON VLSI, January 1979

532

(U1 R.P. Blake, "Exploring a Stack Architecture",
IEEE Computer , May 1977. pp. 30-38.

[5) IBH Corp . • Reference Manual: 7030 Data
Processing System . form A22-653Q: 1960.

[61 Amdahl Corp. , Amdahl U70/V6 Hardwar e Reference
Manual, 1976. --- --- ---

(71 E.I. Organick, Computer System Organization ,
Academic Press , New York NY, 1973 , p. 91, 101 .

ARCHITECTURE SESSION

n1charct L. ~1tes

