311

Silicon Compilation - A Hierarchical Use of PLAs
Ron Ayres November 1978

1.0 Introduction

This paper proposes a way to compile a silicon layout directly from synchronous logic
specification. The motivation for introducing compilation into the silicon world comes from its
extreme success in the software world. As we see silicon area increasing and circuit complexity
increasing, we might feel much in common with the early day programmers who faced increasing
memory availability along with increasing program complexity.

Software and hardware revolve around the same basic concern: The sofiware designer lays
out a one dimensional array of memory whereas the integrated circuit designer lays out a two
dimensional area of silicon. In each case, various constraints must be satisfied in order to obtain a
working product. In addition, both efforts involve lots of modification.

Compilers are around to reduce the amount of specification required to obtain a working
program. Custom programs can be created economically and confidently with the aid of compilers
and programs can be modified quickly even though the resulting memory layout has to change
drammatically. Producing custom VLSI requires these same conveniences. Where a software
compiler revises addresses which reference relocated blocks of memory, a silicon compiler reroutes
wires to relocated blocks of silicon. When changes are made to the logic sbeciﬁcation for the chip,
the compiler creates a new layout with all cells positioned and connected especially for the new
logic specification.

This paper is divided as follows: First, synchronous logic specification and a silicon
implementation for synchrg\nous logic is described. Then, problems arising with large systems
concerning both their specification and silicon implementation are cited and a solution is presented
which both eases large synchronous logic specs and decreases silicon area. This particular solution
introduces a flexible hierarchy into the specification of logic and accounts automatically for
placement and wire routing. The ideas presented here are implemented currently as programs

written in the language [CL which runs on a PDP-10.

2.0 Logic Specification for ICs

Synchronous logic is a language in which one specifies the function
of an IC. In almost all IC designs, there exists at some time a synchronous
logic specification. The synchronous logic spec provides means for simulating
the IC before more detailed work proceeds. Synchronous logic is by no means

CALTECH CONFERENCE ON VLSI, January 1979

312 Ron Ayres

the most convenient high level language in which to describe ICs but it does

provide a solid starting point. Other high level specification languages can translate their input into
synchronous logic.

The language of synchronous logic admits any set of equations written in terms of boolean
expressions and varables. In addition, synchronous logic admits the specification of a unit delay in
time. For example, figure | shows the synchronous logic for a single bit of a resctable counter.

Any set of synchronous logic equations can be implemented in silicon via a PLA
(Programmable Logic Array) coupled with some inverters and unit delay flipflops. Figure 2 shows
a PLA which implements the counter-bit. A PLA by itself implements any set of logic equations
(without delays) which can be written in terms of an OR of AND terms devoid of logical NOTs.
Attach inverters to the inputs of a PLA and one can implement any set of logic equations. Finally,
by adding unit delay flipflops onto the outputs, one can implement any set of synchronous logic
equations. The unit delay flipflops are placed on the outputs of those equations which were

specified with the (as opposed to the = by itself.

~ nex

3.0 Hierarchical or Functional Logic Specification

Conceptual design of any I[C involves partitioning the desired function into smaller
functional units. The smaller functional units themselves may be partitioned etc. so that each of the
smallest units can be implemented with confidence. For example, a frequency divider may be
divided into one counter + one register. The counter can be decomposed further by defining an
individual bit position for the counter.

Functional partitioning provides means to localize design concerns. Functional partitioning
also alleviates the need to replicate equations for replicated components, e.g., the equations for one
bit in a counter may be written once but referenced as a whole many times to form a full counter.
Functional partitioning is old hat in software where programs are written in languages which
support function definition and invocation.

Logic specification can be partitioned by introducing the concept of a logic cell. A logic
cell appears to the outside world as a block box + and interface. An interface is a set of named
signals. Logic cells are related together by writing equations which involve signals, each of which is
specified by naming both a particular logic cell and a particular signal in that logic cell's interface.
For example, figure 3 presents a definition of an N-bit counter in terms of logic cells each of which
represents a single counter bit. The notation \S (looks like apostrophy s) is used to retrieve a signal
given a logic cell and a name. Figure 4 is a copy of figure 3 with explanations superimposed.

COMPUTER-AIDED DESIGN SESSION

Silicon Compilation - a Hierarchical Use of PLAs =

The notation used in figure 3 is working program text which has been used to generate the
illustrations for this article. The program text uses the name LOGIC__LEVEL as a synonym for
logic cell. (LOGIC__ LEVEL was intended to mean one LEVEL of LOGIC in a hierarchy).

A logic cell is a datastructure consisting of three fields:

EXTERNALS: two sets of named pins (input and output)

RELATIONS: A4 set of synchronous logic equations which relate the inputs and
outputs of both this logic cell and all of the subcells (GUTS).

GUTS: The set of subcells referenced by this cell.

This hierarchical synchronous logic specification language has been used successfully to
define an IC whose function is to drive an SCR to control the brightness of a lightbulb,
parameterized by four kinds of instructions. The IC consists of two 6-bit registers, a 6-bit and a 2-
bit shift register, a 6-bit and a 3-bit counter, and a flipflop. The logic specification was easy to
write and it has been simulated successfully.

4.0 Hierarchical PLAs to Implement Hierarchical Logic Specification

To simulate the hierarchical logic specification, a program smashes the hierarchy and creates
one long list of equations. A standard synchronous logic simulator takes it from there. Likewise, a
single, giant PLA can be constructed automatically from the long list of equations and therefore
provide a silicon implementation.

Unfortunately, a PLA can take an inappropriately large amount of area; the area equals
approximately the product of the number of input terms and the number of AND terms. PLA area
can be saved when the designer notices that his PLA implements actually several independent sets of
equations. He can substitute the one large PLA with several smaller PLAs. [n the best case, the
designer can cut PLA area by a factor of & by implementing k independent sets of equations as k
small PLAs instead of one large PLA.

Rather than removing the hierarchy from the logic specification prior to PLA generation,
we can let the hierarchy work for us. Figure 5 shows a PLA which implements a 16-bit counter and
figure 6 shows a hierarchical use of PLAs to implement the same. The subPLAs, the PLAs
generated by each of the subcells, are lined up with all their inputs and outputs facing upwards.
The RELATIONS of the current logic cell are themselves translated to a PLA and placed on the
righthand side of the picture. Finally, wires are placed horizontally above the subcells. These wires
transmit signals between the RELATIONS PLA and each of the subcells and the connection points
(EXTERNALS) of this logic cell.

CALTECH CONFERENCE ON VLSI, January 1979

314 Ron Ayres

This hierarchical use of PLAs as the following principle working in its favor: Local signals
are represented locally in silicon. That is, signals relevant only to a subcell remain inside that
subcell and do not enter PLAs of other subcells or enclosing cells. In addition, a good functional
partitioning minimizes the number of input and output signals. (Notice that software functions
generally take in and produce small numbers of parameters). Therefore, the RELATIONS PLA
will have in general a minimal number of input and output lines, and therefore a nearly minimal
area. With this setup, PLAs will always relate inputs and outputs of functional units.

The shape of a layout will depend not only upon the specific logic equations, but also upon
the chosen hierachy. Figure 7 shows another layout for the 16-bit counter which differs only in its
functional partitioning. The hierarchy for figure 7 is one level deeper; it consists of four subcells
where each subcell itself is a four-bit counter generated by calling COUNTER(4). The
RELATIONS for the new top level connect the four counters in series. Figure 8 shows still another
16-bit counter; this hierarchy is five levels deep and each level relates exactly two instances of the
level immediately underneith. Even though the different layouts have differing areas, a layout not
having minimal area might be chosen merely because it has the right shape for a slot in a larger
chip. This program makes no such choices, however. The user can modify his hierarchy to obtain
the shape he wants.

The layout for a logic cell always comes out with its interface on the lefthand edge. A cell
is utilized as a subcell by rotating it 90 degrees so as to get its interface facing upwards.

This program provides interconnect between the PLAs it generates. The interconnect
generator accepts two sets of fixed pins among which it will provide interconnect. These two sets of
fixed pins lie horizontally on the bottom and vertically on the right, e.g., the interface pins of the
subcells on one hand and the pins of the RELATIONS PLA on the other. In addition, the
interconnect generator accepts a set of movable pins which will reside on the left and which will be
the interface for this level in the hierarchy. The interconnect generator fixes the positions of the
movable pins as it creates horizontal and vertical wires between the two sets of fixed pins and the
one set of movable pins.

5.0 Some Optimizations

The reader may notice that with the counter shown above, the RELATIONS PLA is trivial,
i.e., it represents no logic computation. This RELATIONS PLA serves merely to route signals
between the subcells and the counter’s interface. The equations in the RELATIONS component of

the counter specification contain no logic in fact; they all have the form A = B.

COMPUTER-AIDED DESIGN SESSION

Silicon Compilation - a Hierarchical Use of PLAs 315

Figures 9, 10, and 11 are copies of figures 6 thru 8 where the trivial equations are removed.
That is, equations of the form 4= B have been removed and the signal 4 has been indirected to the
signal B so that whenever signal A shows up in a computation, signal B appears instead.

6.0 Conclusions

The continual increase in silicon area invites compilation because there is some space for
overhead and because our bigger ciruits are getting complex enough to require computer assistance
like that required by large software systems. Modifications will need to be made more readily and
with confident results. In addition, even if silicon compilation is doomed to require too much area,
there are still lots of smaller custom ICs which are needed in short order.

CALTECH CONFERENCE ON VLSI, January 1979

NOISSHES NDISHO AIAIV-YILNINOO

reseiout™

fiimout “'—""—_I

L—-—'——‘ resetin

: !
i \
; |

|

g i

reselout =resetin

[ipout =[iipin & value

vaiue . = (IF lipin THEN =~value ELSE vaive) & ~resetln

Ry

COUNTER-BIT

CEFINE COUNTER_BIT= LOGIC_LEVEL: BEGIM VAR RESET_IN,RZSET OUT,FLIP_IN,FLIP_CUT,VALUE=PIN;
Do RESET Ii:= NEM BIT;
RESET 0UT:= 0IT;
FLIP Ty:= BIT;
FLIPTOUT:= EIT;
VALLE:= NEW BIT;
GIVE EXTERRALS: [pIN: { RESET_IN \MAMED 'RESET IN’;
POFLIP_ TN \BAMED FLIP N }
OUT_PINS: { RESET CUT \NAMID *RESET OUT®;
FLIP TUT \NAWED *FLIP DUT’;
VALUE \NAMED VALUZ- }]
RELATIONS: ({ RESET_OUT \EQY RESET_IN;
) FLIP_QUT \EQU (FLIP_IN \AND VALUE);
(Equations) _— = . =i) \
VALUE \HEXT CIF: FLIP_IN THEN: NOT(VALUE) ELSE:VALUE] \AND NOT(RESET_IN)
] END ENDDEFN

ICL TEXT

FIGURE 1

9T¢

salAy uoy

Silicon Compilation - a Hierarchical Use of PLAs

=i 3 :
R

N

A !

F;“T"\v*“—“”§>—"“
_--.i ______' pre—— : Nty : ot

Nk ’ * !
\‘ \.~._._\f_e | {:_‘,"’1‘ ,\//_)@7“_

i ' i |

- s ' g | |

S BEE f : i
___d_m_,h_ﬂvhﬂaTu_T,_iT,gﬂ.
FHP“Chdl .):_ |___L _

FIGURE 2

CALTECH CONFERENCE ON VLSI,

317

January 1979

318

resetout prr=——sme—=a: pegeiin
lipout [r——— liipin

' |

!

v,V
3 P z V!‘I
LET X = COUNTER-OT [1 .N]
resctin ol X[i] = rosotout of X[I+1] | 5846 B 1

fiipin of X[}

resetin of X[n]
flipin of X{n]

resctout
fiipout

VIl

DEFINE COUNTER(N:INT)=

DO CBITS:~ {COLLECT

LEFT:= C3ITS[1];

GIVE [CYTERNALS:

RELATIONS:

GUTS:

= valuz of X[1]

.LOCIC_LEVEL:

[ix_riNs: {

OUT_PINS: {

= fhipout of X[1+1)

= resetin
= [lipin

= resetout cf X[1]
= flipout of X[1]

forl =1 tan

CCUNTER

BEGIN

COUNTER_BIT \JNAMED (°BIT” N\SUE I) FOR I FROM 1l TO N;);

RIGHT:- CBITS[];

RIGUT\S “RISET_IN®;
RIGHT\S “FLIP_IN® }

LEFT\S “RESET_OUT";
LEFI\S “FLIP_OUT";
CBITS\SS "VALUE® }]
FOR {L;R} $C CBTTS; COLLECT
\EGU (R\S “RESET_OUT");

\EQU

{ TNS “RISET_IN®
INS “FLIP_IN® (R\S “FLIP_OUT")}

cs1Ts] END ZXDDEFN

ICL TELT

COMPUTER-AIDED DESIGN SESSION

VAR CEITS=NAMED LOGIC LEVELS; CBIT,LEFT,RIGHT,L,R=LOGIC LEVEL;

}

Ron Ayres

I=1INT;

‘ISTA NO FONAYIJINOD HOALIVO

6L6T Axenuep

Function Header =

I

—

DEFINE COURTER(N:INT)= LOGIC_LEVEL:

o

GIVE . f

Resulting
10GIC_LEVEL {

-\

COUNTER

Ao
CB17S:= {COLLECT /COUNTER BIT \NAMED (“BIT- NEUB I)' FOR I FROM 1 T0 Ni};

LEFT:= CBITS[1];

EXTERNALS:

The
INTERFACE

RELATIONS:

The logic

{ FOR

{[IX_PINS: {

ouT_PINS: {

{L:R}

RIGHT:= CBITS {¥] ;

].

RICHINS “KOSET IN“;
RIGHT S “FLIP_IN”

| [vor nawing convenicnce,
let LEFT & RIGHT refer to the
lefrmost & rightmost

counter } .bits.

LEFT\S “RESET_0UT";
LEFT\S “FLIP_OUT";

CBITS\SS “VALUE® ~“7 }]

$C CBITES;

A

{ INS “RESET IN®

COLLECT

\NEQU (8\S “RESET OUT");

BEGIN VAR ~CBITS=NAMED LOGIC LEVELS; CBIT,LEFT,RIGHT,L,R= LOGIC_LEVEL;

o e

3

J

1
[e INS “FLIP_IX” N\EGU (R\S “FLIP_CUT")}
l GUTS: CBITS ERD EXDEFN
e RIGHT
Rrse!-
Resot
0 - _
w ! 1™
cair1} cem(za] CBIT{ 3} CBiT[4 i
i 3 b
out : | T i] Tp
| | | | n
VALUZ[1] VALUE{ 2] VALUE{ 3] VALUE[4]
s |__LEFT\s Rosol-in’ RGHT\s ‘Resal- O’ |
—_— i .
LEFT\s Fiip-In RICHT\s Flip-Out’ |

I=IXT;

Assign to CBITS, an array
of ¥ counter bits, each
nazmed 'BIT' sub I

This cempact cxpressicn
produces a set of named pin
the 'Value' pan of each
counter bit, named

'WALUE' =ub I

Connect -the two adjacent
counter bits nzmad L & K

Loocp Gerevator: Sct che
varishles L & R to each
adjacent pair of ccunter
bits from the array of
counter bits CEILS.

FIGURE 4

SY1d JO oSl TBOTYOJBISTH B - uor3zBITdWO) UODITIS

61¢€

320

Ron Ayres

LT

)

-
S

ey

Figure 5

'6-bit counter as
one PLA

area =32000C

COMPUTER-AIDED DESIGN SESSION

321

Silicon Compilation - a Hierarchical Use of PLAs

T_prfuh mt.: “:__ ' t
> ...m.:u.
Iy
Ji
: ; e
T i T
11 [y u_" i
= = - I
il 1
W = &l
”p = .m > i .-
lm \w 1 “. .m
i |
7 [
| _ | _
| i
_ Pl
_ i
. = |
Eln’dﬁ < Tt

00QC||= £as0
13UN0 1iq-9|
g airbig

CALTECH CONFERENCE ON VLSI,

January 1979

Ron Ayres

322

(MR Lilid l gl Ll |
iy v] ¥ AN & Ja |
1 E] 11 L) (0 R P |
= R] 3} .‘.r._ll ..pn
> ; adnguphn N
! _— 1§11
bty b)
1 ST T e
| BEo b
P“pn h|..|wl
Tt gar: H

5 2 T
e :
4= 4 i |
_ =R e
Fr et | T iHE
_ _ —1TC
[L e T
TRE T
R
1 — + e u _Hmlnﬂﬂ _
Hiya=s i i n g e wm g LA

=
- r._.*_-

::.511!
i

salisjsills
i F

11

WETE
=

Pl B '_1'.
d

117
| 3\
I i
~— ‘br v
i | !
. B 1 1
BmJ ; 9 ST
| H = 1 1
I 5 R & S T
] A | (LAY -
+ re i] U
T 1 EA R 3 S
8 1 13y TR
H i S feen L8
H Al LYk
| L R
i) }
P_] ! T 4
i] +
i | -
St I
i 1
— 1
i = e
i i)
l.,'_‘—l
il
i1
1
L 2mbiy

COMPUTER-AIDED DESIGN SESSION

323

Sllicon Compllation - g Hierarchical Use of PLAs

I ¥
Al_l._” Ml.
i .]
= d T .
e | ——
Hii=. _ 1 s m_| g ey
NS R ==
=i Hl_ | 0ol EE 3R
e b5 =T =R g
5 h g _“ = g ! Ny - i
it] gy i S b
=iy S8 B o marwe I U 0 3 4 e
| Bl Bt maatil | TRl
| ELaE _Tr._mr_lrﬂ#l | T
A L 3R ks 3
EA et
000/, = D30 o iz <) ”__ Atdm _ﬂ -1
K i |
131] i
R u T i
hm m | S T _ L
1A _ [T __
Htthg 1 . 1
Y

W | =
| H 88 B sl 5 - s LD
m [1iH] o luuﬁ __ i1 _ Sy o i
| b n“.._w.Hf _ : J .ﬂ 1y BEY L | = sl
s a1 BN SR B
ML b 520 8 b 5 e | | _ = .h.ul_l_ —
U el e T
_ _ ShrrHH 8 13 B 0w g g e s
_ %_ i s g il el B e _.“ S |
s g) i A A EEE L 22
_ SR T =L b:ui,._p it _: .thm T =
i | ! R V
14] ! ml__r _. q_._ .‘
H - I e e
i SUERSRRA
] z5a eeued
i | |
i 1 :
m i
| w
;
|

l

CALTECH CONFERENCE ON VLSI, January 1979

Ron Ayres

324

Hirsere i 11 111 | Wil nuu ILIESL LY et Ly ! IRINY) & L WO L) Wl

imeteslrevaren fisipras finsarve fiainiza fusraisslliniaion fralaionlmeign Ninana frasaina B id;nseufhininroe Braiscan Bisrasa. &U_Jum_.

Fre e RS HI..U..L% i w‘.m...ﬁl .rh,..&wﬂ. FELITE] lﬁ.;..u..ur.i i .nrjl e FPET] p
| - e H - i — _ l_ll.lr.a_ t
.] ! | ! P! o3 =

_

COOE =~ paio
panowai suojonka [DIAUL YiM
43{4n03 313 -9|

6 ainhi4

COMPUTER-AIDED DESIGN SESSION

325

Silicon Compilation - a Hierarchical Use of PLAs

@

B AT

Al

=

T

pps
-1

L

—

_3, @

G —
j s ?_HTF
s N Bk il

- J-
J
,LM < Jﬂ
= 3 +
T = ot
R N
i 30 18
—Jﬁl.l._.l - i
_ I pasn}
- 1&.17.!.!! Z b.- ﬁﬂo lﬁﬂmmm
ﬂ ﬂ.wl pup
. letg— U}-i3s8Y
| ! \
] — NITEREL
H
| NI
oyl
(1230734

LA

C2 Y2 EA

(EITNHA

ChIENWA

C13E0A

(2)2NTA

CEINNA

ChYahia

January 1979

CALTECH CONFERENCE ON VLSI,

null Ayres

326

2

i
lt 4
i
al

gy} s
| el p==r
_ _ — 4t I.__w.ﬁ.’ 5
| _ =L IF_H .lLL..M 1
N s .u......|._

) =k e

i
| |

000Y 030 | | | | “
|1 8nbig

| -
w MWWWU“ =+
R =
| =
i
__M;
_T___
il
il
L —

l
I
'
|
|
i

COMPUTER-AIDED DESIGN SESSION

