
Computations on a Tree of Processors

Sally A. Browning

Computer Science Department

California Institute of Technology

Pasadena, California 91125

Because processors and memories are both implemented in silicon, it

is worthwhile to consider architectures that mingle both functions

on a single chip . With the VLSI promise of a million or so devices

on a ch1p, several hundred processors can communicate with each

other at on-ch1p speeds.

But in order to manage the complexity of such a ch1p, both when

designing 1t and when testing 1t, the interprocessor communication

paths should be regular and simple. This paper exa~ines the utility

of a particular interconnect scheme, a binary tree .

The processors are arranged as a binary tree: each processor except

~ne root has a single parent, ana each orocessor except those at

thA leaves of the tree has two descendents. This arrangement models

the hierarchical communication round 1n large organizations.

The binary tree architecture has some interesting aspects that make

it a good choice for a general purpose structure. Any particular

processor in a tree of n processors can be accessed in at most

log2 n time. This comoares favorably with the O(n) access time for a

linear arrangement or orocessors, or the O(~) access time if the

processors are arranged in a rectangular array.

The number of processors available increases exponentially at each

level 1n the tree machine. If the problem to be solved has this

growth pattern, then the tree geometry will match the problem. By

The research described in this paper was sponsored by the Defense

Advanced Research

Noo 1ZJ-7a-c-·oao6.
Projects Agency under contract number

CALTECH CONFERENCE ON VLSI, January 1979

454 computations on a Tree of Processors

contrast, processors arranged as a list have a constant number of

processors (namely 1) available at each level. And rectangular

arrays make a polynomial number of processors available at each

level, according to the allocation scheme chosen . Figure 1

deMonstrates this property of the three structures .

These three schemes are the simplest ways to connect processors

together. They provide each processor wi th two (the list), three

(the tree), or four (the square array) neighbors. Each has

advantages over the others, and each has a fan club.

The point of my. research is to determine whether or not there is a

predominate geometry to the problems that might be solved on a

highly concurrent machine . If such a geometry exists , and a

hardware implementation 1s realizable in silicon, then that ~achine

should be bu11t.

Since the tree architecture appears to have more flexibility than

the other two structures, I have concerned myself mostly with it .

Th1s paper will describe several algorithms that have been

successfully mapped onto the tree. In later sections , the

Ringmachine, a linear array of processors proposed by Hike

Ullner[7] , will be introduced in order to show that problems that

are dominated by loading and unloading do not require the

additional communication paths available in the tree . 1ne final

section of the paper describes a problem from numerical analysis

that makes effective use of the tree machine . The oaoer ends with

some comments about the direction future investigations will take.

A Digression into Programming Notation.

The processors in the tree have some characteristics that must be

emphasized by the notation used to describe them.

First, each processor is a general computing machine with some

amount of local store. A template that tlescr i bes both the program

ARCHI TECTURE SESSION

Compu tat i o n s o n a Tree of Processor s

Ust
Pt= 1
P1 = 1

Corner
P1 = 1
PI "" Pe-t + 1

.

A
Tree
pl = 1
P. = 21·1
I

Center
P. = 1
~ = i2 I

i\

P1 s number of processors at level i.

l'I&IUW J. Proce••or• Available at eacll Level.

455

CALTECH CONFERENCE ON VLSI, January 1979

456 ~ally A. Bro wnin g

and the data that will characterize each processor. This template

will be instantiated as many nodes of the tree .

Communication between each processor, its parent, and its children

should be limited to explicitly defined entry points. That is,

there is no omnipotent entity that is able to oversee and influence

the actions of other processors except as explicitly described .

Each processor can expect to have local sovereignty, and can only

be affected by communication it expects.

And perhaps most importantly, locality should be encouraged in the

problem solutions . Communication between processors requires

synchronizing their actions, limiting the amount of concurrency

that can be achieved.

The notation that embodies these criteria is the class construct

described by Dahl and Hoare [4). The class allows the programmer to

def1ne as a single entity both a data structure and the procedures

that operate on it . Thus the implementation details are known only

to the class itself. Each object is an instance of a class, and can

be thought of as a machine, capable of local computation but

responding to well-defined requests from the outside world.

The most widely known programming language that incorporates the

class construct is SIMULA 67 [Z]. SIMULA extends the syntax of

Algol 60 with class definitions . I will use a modified version of

the SI"ULA syntax to describe the nodes in the processor tree. The

syntax for a class declaration can be described in BNF as follows:

<class declaration> :: • class <class identifier>

<formal parameter part>;

<attribute part>;

<class body>

<class body) ::• <statement>

ARCHITECTURE SESSION

Computations o n a Tree of Processors

In order to deacr1be highly concurrent algor1th~s despite the

aequent1•1 n•tur• of SIMULA, the meaning of the se•1colon symbol is

changed. In vanilla SIHULA, semicolon is used to terminate a

statement. Instead, read semicolon as "At this point, all

statements in progress must be terminated before advancing to the

next statement•. L1nefeed will be used to indicate syntactic end of

the statement. In other words, linefeeds are used to separate

statements; semicolons are used to separate groups of statements

that can execute concurrently. E. W. Oijkstra introduces this

se~1colon convention in [6] .

Making Arbitrary Branching Ratios.

While the physical structure of the tree restricts each processor

to two descendents, a logical structure can be imposed on the tree

to accomodate an arbitrary branching ratio. Each logical processor

consists of several physical processors, enough to provide the

desired number of offspring. A logical node with n children is

built from n-1 physical nodes and is log2n levels deep. Figure Z

shows some sample logical processors . Figure 3 gives a SIHULA

representation of the algorithm used

branching ratios.

to simulate arbitrary

All of the algorithms described in this paper will describe logical

processors and the logical structure of the tree. The SIHULA code

assumes the existence of the logical processor defined in Figure 3,

and builds definitions based on it . The complex~ty of each

algorith~ will be calculated for the physical structure, however.

Sorting.

A binary tree with depth log2 n can be used to sort n numbers. The

sort is accomplished as a byproduct of loading the numbers into

memory and then reading them out again. The numbers themselves are

457

CALTECH CONFERENCE ON VLSI, January 1979

458 Sally A. Browning

1'1gure B. Lolflcal Proce••or• with 2 to 8 Deacendent•
(•oltd color boxe• compriae the logical proc•••or)

ct.ASS NMe(fl)tiNTfGER"'
BEGIN

RIF(Node)left.rtllttt

llftlt o.- to butN logfcal node1
tf ft)Z THEN left:•NEW Node((n+1)/12)1
If ft)a THEN rflhta•NEW NOIIe(rt//Z)a

END of ClAU N..._

Rtr(PtoooaecM') PROCEDURE 8oft(a)1 INTEGER •a
BEGIN REF(node)IJa

lt••lf a<•(n+1)/IZ THEN left ELM rflht1
WHILE NOt (It IN Procouor) DO

It•·'' a<•(~t.ft+1)/IZ THEN ll.left ELSE , .rtghtt ,.
END of PROCEDURE 8oftt

END of CLASS ProcoaMrt

1'1gure 3. MaJUn,g Arbitrary Branching Ratto•

ARCHITECTURE SESSION

Computations on a Tree of Processors

never in sorted order internally, but come out of the tree in the

desired order .

Sorting is • particularily interesting example because it

illustrates a fundamental issue in concurrency. It is well known

that sorting on a sequential machine can be done with O(nlog2n)

comparisons. However, it has been shown on very fundamental grounds

that if communication is restrict.ed to nearest neighbors, at least

n2 comparisons are required[5]. The apparent advantage of the

algorithms comes as a direct result of longer

communication paths. It is also clear that no scheme will be able

to produce an ordered set of numbers until all numbers are loaded

into the machine. This means that the best achievable

complexity is O(n).

time

The algorithm I use is an implementation of heap sorting. The

algorithm that runs in each processor, given in Figure 4, has a

procedure for loading the tree called Fillup end a procedure

invoked during the output cycle called Passup.

Fillup keeps the largest number seen to date, and passes the

smaller one to the right or left child, keeping the tree balanced

by alternating sides .

Passup returns this processor's current number and refills itself

with the larger of the numbers stored in its descendents. This

action is pipelined so that the largest number is always available

1n the root.

This sort algorithm is bounded by the time it takes to load and

remove the numbers. Thus it has time complexity O(n). It requires n

processors, one for each number to be sorted.

459

CALTECH CONFERENCE ON VLSI , Janua r y 197 9

460

Proceaaor CLASS HeapSort,
BEGIN

INTEGER number;
BOOLEAIII balanced,empty,
REF(proceaaor)left,rlghtJ

PftOCEDURE flllup(cMdldate), INTEGER cendldate1
BEGIN

IF empty THEN
BEGIN
n~•cand,..te

emptra•fALSE,
END
ELSE
BEGIN

IF candtclate>nuwtber THEN lawep,
BEGIN INTEGER t&

ta =candidate,
candlclatea•nuwtberJ
numbera•t,

END1
IF balanced
THEN left. tlllup(candt.s.te)
USE rfaht. flllup(candidate),
balanceda•NOT balanced;

END1
END of procedunl flllupJ

INTEGER PROCEDURE ,.aaupl
BEGIN

paaau~t:cnumber,

If left .. NONE AND rtght .. NONE THEN emptya•TRUE llta a leaf1
ELSE
If loft.empty THEN
BEGIN

tr rtght.empty THEN emptya•TRUE !both aubtntea empty;
ELSE ~a•rtght.,.aaup, Ifill from right aon,

END
ELSE
If rtght.empty THEN numbef':cteft.,.aaup Ifill frCMII left aon,
ELSE numbera•lf left.nuwtber>rtght.number

THEN left.,.aaup ELSE rtght.,.aaupa
ttake the Ia,..,., of the two,

END of proceclure ,. .. ~,

Unit code&
empty:•TRUEt
balanceda•TRUE&
!left end rfttht

END of olau Hoapllort1

P11JUre 4. Heap Sort

ARCHITECTURE SESSION

Sally A. Bro wning

Compu tat i o n s o n a Tree of Processor s

Matrix Multiplication.

Consider the problem of mult i plying two nxn matrices together. The

tree machine algorithm that provides the answer in the least amount

of time divides the multiplicand into rows and the multiplier into

columns, pipelines the loading

single eleMents. This process

O(n2
) tiMe, a processor and

and multiplication of

requires O(n2
) processors

time product of O(n4
).

pairs of

and takes

If each

processor has enough •emory to store a row of the matrix instead of

a single element, the algorithm would require O(n) processors,

resulting in the more familiar O(n3
) product.

The algorithm makes use of a tree that has a branching ratio of n

at each node, and is two levels deep . The root node has n

descendents, each controlling n leaves of the tree . Then there are

n2 leaves and a total of 2n2 -1 processors.

Each child node of the root, hereafter called a rowsupervisor,

will represent a row of the multiplicand matrix, and produce a row

of the product matrix. Each of the n descendents of a row

supervisor will hold one element of the row.

The algorithm is given in Figure 5. The multiplier matrix is loaded

into the tree one element at a time, by column . The root hands each

element to all row supervisors, wh i ch s end it to their appropriate

leaf: the first element in any column goes t o the fi rst child of

each row supervisor, the nth element to the nth child. That child

multiplies the multiplier element by the multiplicand element it

holds, and returns the product to the row supervisor. When an

entire column of the multiplier has been loaded into the tree , each

row supervisor takes the n products generated in its children, adds

them, and returns one element i n the corresponding column of the

product matrix. That is, when the first column of the multiplier

has been loaded into the tree , the first column of the product

matrix is available, and so on.

This process can be pipelined to take O(n2
) time . Thus the t i me it

461

CALTECH CONFERENCE ON VLSI, January 1979

ProceaMr ClAU ,.,...,.
BEGIN
lthe Mlltttx alzo, N, Ia an attrtt~Nto of CLASS "oco•-· a.t11 I• avau--.
to ua,

"EAL....-ott
INTEeER oo..tt

PROCEDURE LoH(o'-t)l REAL .._,,
BEGIN

co•t••count+1,
aon[oovnt).load(-'-"t)t
IF eount•N THEN oCHiftts•Oa

END of ,_ • ..,_ LoMt

"EA,L PMJCEDURE Mtllt~.._t)t REAL .._..,
BEGIN

eounta•eount + 1t
pntduota•pnMiuct + aon(.....t).MUitlply(.._.t)l
tf co.nt•N THEN
BEGIN

MUittpl~a•,.-otl

counta•Oa
,..,., •• o.o.

ENDt
END of ,.cod ... Meett ..

llnltlallntlont
counts•Oa
pnMhtclts•O.Oa

END of ela

ProceaMf CLASS LMft
BEGIN

PROCEDURE LoH(o'-t)t REAL o'-11
BEGIN rowe....._,., • .._.,,
END of ,roce..._ Load1

PROCEDURE Mult.,ey(•l•••nt)t "EAL .._...,
BEGIN .

MUitlptya•row•loooKAit • .._.,
END of llfOD•,_. Mutt ..

T11f1UW 5. Afatrbc Mult1p11cation

ARCHITECTURE SESSION

Sally A. Browning

Computatio ns o n a Tree o f Processo r s

takes to load the n2 elements of the matrices dominates the t i me

complexity of the problem . Remember, however, that matrix

operations are meaningless except in the context of the driving

problem. The entries in the matrix

generated, and the generation time may

must be taken, however, to generate

are not

be less

so much loaded as
2 than O(n) . Care

the matrix entries in the

arrangement used by the multiplication algorithm; moving elements

around in the tree is costly.

The Color Coat Problem.

This NP-complete problem is an adaptation of the K-colorability

problem. Given an undirected graph G of n nodes and a set of n

colors, each with an associated cost, f i nd a mi nimum cost coloring

of the graph such that no nodes sharing an edge are the same color.

There are n" possible colorings of the graph. Evaluating them

sequentially produces a solution in time O(n"). I present a

parallel algorithm of order n2
•

Each level 1n the processor tree r epresents the consideration of

another node . That is, level one shows possible colors for the

first node, level two colors the second node based on the choices

made for at level one, and so on. I will describe the generation of

the potential colorings .

Each processor, described in Figure 6, has an edge list called edge

and a list of costs indexed by color number called colorcosts.

There is an array called coloring that reflects the color choices

for preceding nodes, and a boolean array called colors that 1s used

to generate the possible colorings for this node.

The algorithm, given 1n procedure color, begins by assuming that

all colora yield valid colorings . The array coloring is used to

eliminate those colors that have been used to color nodes that

share an edge with this node. This reduced set of colors, all of

' .I: OJ

CALTECH CONFERENCE ON VLS I , January 1979

464

Pfoceaa• ClASS ColorCoata
BEGIN

BOOlEAN ARRAY edfe[1•n,1•n),colora[t tn)a
INTEGER ARRAY oolortng(tan],colorcoata[1•n]a
INTEGER ooat1

PROCEDURE cotcw(_.), INTEGER_.,
BEGIN INTEGER Ia

tf ftCMie)n THEN
BEGIN

coat••O.
FOR h•1 TO_.., DO ooat••coat+coiOf'Coat(coiOI'Ing[t]]a

END
ELSI
BEGIN

FOR h•t TO nocle•t DO If eclge(t,noclll) THEN
ooiOf'a(coloring[I]]t•f ALSE 1

fOR h•t TOn DO
tf colora[l] THEN
BEGIN

aon(f).colortng[noclll]••l
aon(t).cotOI'(node+t)I

END
ElSE aon(l)z·NONEt

ooat••,...xcoatt
fOR h•t TOn DO

ENDt

If (If aon(t) • NONE
THEN FALSE ELSE coathon(l).coat)

THEN ooats•aon(l).ooatt

END •t ,no•..,. colort

END of ota .. c.IOf'Coatt

1"1gure 8. CoJor-co•t Problem

ARCHITECTURE SESSION

VL4o.._....._,Y C'1 • UJ.. VVY 1.l..1..U f5

Compu tations on a Tree or Processors

Symbol

•
G

II

Color
Bl ue
Green
Red

F1gure ?. Color-Coat Example: Graph and Color L1at

1"1gure 8. CoJor-Co•t Exampler Solution Tree

Cost
2

1
0

465

CALTECH CONFERENCE ON VLSI, January 1979

466 ~a~~y a . tlr ownln g

wh1ch are legal colorings, is used to spawn descendents, one for

each coloring or this node.

When the tree 1s n levels deep all the legal colorings have been

generated. The leaf nodes calculate a cost for the coloring they

represent, and each parent node takes as its cost the least cost

among 1ts children. Thus the minimum cost coloring is stored at the

root .

An example 1s 1n order . A sample graph and color set are given in

Figure 7. Figure 8 shows the colorings and costs arrived at by the

algor1th~. Each level of the tree represents a node of the tree.

That is, 1f the root is level 0, the first node is colored 1n level

1, and level 3 represents potential colorings for the third node.

Besides representing a part of a coloring, each node also contains

the M1n1mum cost coloring found among its descendent colorings.

The MinimuM cost of coloring the sample graph is 1, and is achieved

by coloring nodes (1,2,3) (red,green,red) .

When the color cost problem is solved in 8 brute force manner on 8

sequential machine, it takes exponential time. The tree machine can

solve the probleM in O(n2
) time us i ng an exponential number of

processors. So on either machine, this problem exhibits exponential

growth .

Transitive Closure.

Given a directed graph G, the transitive closure of G, G• , can be

generated. The arcs of G• are subject to the following condition :

for every arc (v,w) in G• there is a path, (v,e 1),(e1'e2), • • •

(em, w) , in G •

The best sequential algorithm for generating the transitive closure

of a graph 1s attr i buted to Warsha11[1,8]. The algorithm uses three

FOR loops · that run through the incidence matrix adding Rrcs. After

ARCHITECTURE SESS ION

Comput a tio ns o n a Tree of Processor s

k steps of the outer loop, there is a path from vertex i to vertex

j through vertices in the set {1,2, ... ,k} if and only if B[i,j]=l .

On a seQuential machine, this algorithm takes O(n3
) time. The code

1s given in Figure 9.

A direct mapping of Warshall's algorithm onto the tree machine
3 .

yields a rather boring n algorithm that merely spreads the three

iterative steps among the processors in the tree .

There is a much more fruitful path to take. By understanding what

actually happens during the execution of the algorithm, an

effective mapping of Warshall's algorithm onto the tree machine is

discovered.

There are two key points to be made about Warshall's algorithm.

First, the algorithm is cascading. Newly created arcs can effect

the creation of yet more arcs . Any realization of the algorithm

must allow for this characteristic . It is not sufficient to

consider only the arcs in the original graph.

Also important is the comparison between arcs. In Figure 9 this

comparison is stated as

IF b[i,j] AND b(j,k] THEN b[i,k]:=TRUE;

In English, this reads •if there is an arc from i to j, and an arc

from J to k, then create an arc from 1 to k•.

Suppose that instead of an incidence matrix, there is a list of

arcs. This list will be used as input to the tree machine. The

output is the list of arcs in the transitive closure.

The tree has a root node, n descendents of the root that are

instances or the class vertex, and n2 descendents of the vertex

processors described by the class toVertex.- The vertex processors

represent the n nodes in the graph. The toVertex processors are the

n possible arcs from each node. Jim Rowson deserves special thanks

467

CALTECH CONFERENCE ON VLSI, January 1979

468 Sa l ly A. Hrown1ng

~or distilling my complicated structure into this very simple one.

The arcs in the original graph are used only as the starting place

and are indistinguishable from generated arcs. As new arcs are

created, they are considered by all th.e vertex processors just as

the original arcs are.

Area are created using a variant of the Warshall comparison. An arc

has a starting point, fromV. and an ending point, toV . Each arc is

considered by all the vertex processors. Each vertex will create an

arc by turning on its appropriate descendent if one o~ two

conditions · is true. Either this vertex must be the starting point

of the arc. or there must be an existing arc from this vertex to

the starting point .

The first condition takes care of the arcs in the original graph.

The tree starts out with no arcs. As the original arcs are loaded

into the tree, the ~irst condition is true and arcs are created.

The second condition 1s the Warshall comparison. Suppose the arc

(v,w) is being considered by vertex u . If arc (u,v) exists then arc

(u,w) is created. This is how new arcs are created.

As each arc is created, by

broadcast throughout the tree;

other arcs.

satisfying either criterion, it is

it might effect the creation of

The code for this algorithm is given in Figures 10 and 11. Figure

10 shows the properties common to all three kinds of processor

nodes, •nd defines some auxiliary classes used for queueing and

passing date between processors. Figure 11 is the definition of the

three processors, including the procedures that implement the

revised Warshall algorithm .

The key routines are load and unload . Procedure load appears in the

root and vertex processors and is used to pass arcs through the

systeN. Unload is in the root. Each call on unload yields an arc in

ARCHITECTURE SESSION

Computations on a Tree of Processors

BOO\.EAN AftRAV B(1tn,1tn]a

INTEGER I,J,II.a

FOR kt•1 ton DO

fOR h•1 ton DO

feft ja•1 ton DO

If l(t,k) AND 8(11.,1) THEN B(I,I]1•TRUEa

#'tgure 9. War•ball'• Algorithm (Sequential Macbtne)

CLASS .-ooea ,
BEGIN

REF(proceaaor) MY•Y aoft(1m]a
Mf(.-ooeaaer) ,.,_,,

END ot elaaa IINOOHOfl

twoc••- CLASS Gtwoco•-•
BEGIN

REf(hoad)Qa

PROCEDURE IMertlnQ(qe)l Rff(.,ouoEietMnt)qe1 qe.lnto(Q)a

REF(..-uoE'-"t) PROCEDURE flratlnQ,
BEGIN Rff(t~uoueEIOfMftt)tiea

flratlnQa•qe••Q, flr1t1
qe.out,

END of ,.._ •• ..,. flratlnQI

END of olaaa O,..OOOhOfa

tlnll. CLASS .-uoE'-"t(~)l Rff(Qproooaaor)lftY()wnofl
BEGIN
END of olaaa .,.uoEe....ta

CLASS odge(froMV,toV)I INTECRR tr-V,toV1
BEGIN
ENDofola

#'tgure J 0. General Proc•••or De~1n1t1on and Auxtlary Cla••••

469

CALTECH CONFERENCE ON VLSI , January 1979

470

QprooeaMf CLASS roota
BEGIN ·

PROCEDURE loed(o)a REF(Mie,_.
BEGIN INTEGER Ia

FOR h•t STE!It 1 UNTil" DO aon{t).loH(o)a
ENDof loMa

REF(.....) PROCEDURE Uftfoetl1
BEGIN

IF Q ty THEN tlftfoNa·NONE
ELsE BEGIN REF(..-.E'-'t)qea REf(ectge)e1

tte•·fttatlnGa
unfoM!•e.•tte • ...,own..nextE.I
loed(o)t

ENDa
ENDofiii'ODd----.

BEGIN Int..- Ia
FOR h•t STEP 1 UNTIL" DO aon{l)r•now -'ox(t)a

END of lnlt o.-,
END of olaaa roota

QproceaMf CLASS vertox(MyNoiJo)a INTEGER MyNoclot
BEGIN

REF(....,_EioMoftt,.,
BOOlEAN .,ou.da

REF(..) PROC£DURE nextE.,
BEGIN AEF(ttuo_E...._.t~ta

ttt:• ftfatlnQ;
neatEdgor·NEW odgo(MyNoclo.t~t.My()wner.~~tyNocloa
IF NOT Q ty THEN ,_..,t.ln-'tnG(IIO)
ELSE tiUOuod:"'FALSEa

END of prooodwe neat£.1

PROCEDURE loed(o)1 R£f(odgo,_.
BEGIN

IF o . fromVo:MyNoiJo OR .-(o.tr-v).M~oo•lt•
THEN BEGIN

aon[•· toV).IMfUtlloa
tFNOTIIUOu.d
THEN BEGIN

...... t .ln-'lnG(tte)l

..-..... •TRUEa
ENDa

END1
END of pr....,. toMa

..-uotlr•faiMt
410: -NEW 'IUOVOEioMent(THts wrtox)t

BEGIN INTEGER It
FOR 11•1 STEP 1 UNTIL" DO Hft(t)a•now toVertoa(l)a

END of lftlt coclo1
END of claaa verto•t

Sally A. Browning

l'lgure ll . lfevl•ed War•halllmplementat1on (Contlnued on next page)

ARCHI TECTURE SESSION

Computations o n a Tree of Processors

Q,_a.- ClASS toVertoa(MYNoct.)t INTEGER ~ttyNoct.t
BEGIN

REF(quouoEe-t)qe,
BOOLEAN edgeEal•t•t

PROCEDURE ~Edfel
BEGIN

If NOT edgllfAiata
THEN BEGIN

edgiiEalataa•TRUEt
p~.m-tlnQ(qe),

ENDt
END of pr-•lt- ..tlE t

odgeEal•taa•fAlllft
qoa•N£W quouo£'--'t(THIS toVertoa)t

ENDofotaaa-...

r1gure! !. Rev1aed Warallall Algorithm lmplement.t1on

r~&are ! B. Arrangement. o' a 111 the Tree and R1ngmacll1ne

471

CALTECH CONFERENCE ON VLSI, January 1979

472 ~ally A. tlrown1ng

the transitive closure.

Each arc in the origtnal graph is aiven to the rool via a call on

procedure lnad. The arc is passed to all vertex processors. There,

on the second level, each vertex executes the test described above

to see if the arc causes the creation of an arc from this vertex.

Once all the arcs of the original grapn have been loaded, the arcs

of the transitive closure are available for unloading. As an arc is

handed to the outside world by a call on the root's unload

procedure, it is passed back down the tree to the vertex

processors, just as the original arcs were, by a call on procedure

load.

A double system of queues is used to indicate the availability of

arcs for the unloading and broadcasting ooerations. The queue in

the root is used by the vertex processors to indicate willingness

to provide an arc to the root. When an arc is unloaded, it is also

broadcast through the tree via the load routine. The aueue in the

vertex processors is used by the toVertex processors to indicate

that another arc has oeen created.

The queues are used to avoid polling the vertexs and toVertexs fro~

available arcs. The polling introduces two iterat1on statements

which are executed for each arc 1n the transitive closure . They

cloud the issue by appearing to affect the complexity. The queues,

on the other hand, simulate the hardware nicely. The two upper

levels of the tree need to respond to a signal fro~ any one of

their c~11dren. The queues provide this effect.

The algorith~ as described above and in Figure 11 has time

complexity of the order of the number of arcs in the ~ransitive

closure. The maximum number of arcs in a direct~d graph of size n,
a 2 is n ; the transitive closure is itself such a graph, is n . Thus

the time complex1ty of this algorithm is O(n2
), li~ited by the ti~e

1t takes to read out the arcs of the closure.

ARCHITECTURE SESSION

Computations o n a Tree of Processors

As described, z Zn -1 processors are used to generate the closure. A

solution using only n+l processors, yet essentially the same, can

be devised. Suppose each vertex processor, now the leaves of the

tree, contains a boolean array instead of using toVertex processors

to represent existing arcs. The vertex processors have more local

store. and a parameter of the problem, the size of the graph, has

been introduced into the physical requirements for each processor.

This is something I want to avoid. It is, however, a perfectly

valid implementation, and indeed, retains the O(n3
) total

complexity.

Is the Tree Machine Magic?

lt is time to address the question of whether these problems need

tne tree machine structure . The answer is simple. No. I will give

an alternative architecture that vields an equivalent solution.

Mike Ullner has oroposed the Ringmachine (7], a •tree of branching

ratio one•. The structure is a doubly-linked ring of processors, or

more simply, a linear pipeline.

This structure is also capable of doing transitive closure in O(n2
)

2 time using O(n) processors, and the code is as simple as that for

the tree machine implementation. The Ringmachine algorithm is given

in detail in [3].

The key to the O(n2
) solution is the

communication path. In fact, sorting and matrix

pipeline, not

mu 1 tip li cation

the

are

also problems in this class . The size of the answer determines the

size of the problem. Any pipelined structure that can spew out

answers one at a t1me in a continuous stream is adequate.

So what is the tree machine better at? The difference between the

tree and the ring is that any particular node in the tree can be

total number of processors . Problems that have one answer that can

be in any of a larQe number of processors can take advantage of the

473

CALTECH CONFERENCE ON VLSI, January 1979

4 74 Sally A. Browning

tree structure. NP-complete problems, like the color cost problem

treated aarl1er, are a graphic example of this. Those problems

require an exponential number of processors, however, and thus are

not practical.

An Algorithm that Uses the Tree Effectively.

J have found a problem that does make use of the extra

com.unication paths in the tree. It is taken fro~ numerical

analysis, and is presented here out of context. The proble~ 1s to

generate a vector x from a vector a according to the following

rule:

In other words, the ith element of the vector x 1s the su~ of the

first i ele•ents of the vector a. This proble~ is solvable on a

aequant1a1 .. china in O(n) ti•e .

If the tree ••chine and Ringmachine are treated as peripheral

functional units that are given a and produce x, the performance of

the two Machine is identical. loading and unloading the vectors

again dominates the t1me complexity . In each case, n processors are

used to solve the problem in O(n) time.

A mora interesting formulation of the problem assumes that the tree

and R1ngmachine are already loaded with some convenient arrangement

of a. How fast can x be generated, with x ending up in the same

arrangement as a?

Given the arrangements shown in Figure 12, the Ringmachine uses n

processors to generate x in place in O(n) steps. The tree machine,

on the other hand, uses n processors, but arrives at the answer in

0(1og2n) steps. For large n, this is a significant difference.

ARCHITECTURE SESS I ON

compu~a~1ons o n a Tree or Processors

CLASS aum(a,maJt)l INTEGER a,ma~;
BEGIN END1

PYec••- ClAU -torSUWII
8EOIN

INTEGER aubacrtpt1
INTEUR 11t1

AEF(aam) P'AOCEOURE 8U""'ftl
BEGIN

It' f..rt••NONE AND ,._,.••NONE
Ttftflf _u,a•NEW auM(~~t,aubacript)
ELM BEGIN MF(avm)l,r1

h•lf .. tt••NON£ THEN NEW .. lm(x,aubacrlpt) ELS£ left.aumpuPf
ra•lf rtght••NOffE THEN NEW IUWI(x,aubaorlpt) ELSE rlght.aumpup,

···••1 .• ,
IVMUpa-NEW IUM(lll+r.a,r.IMX)I
fett .au.clown(l)l
rllht.aumdown(NEW aum(~~t,aub.crtpt))l

ENDt
END of~-~~~

PROCEDURE autiMiown(p)l AEF(aUM)PI
BEOtN

If p x(aubaorlpt THEN lllt•~~t+p.al
If left•/•NONE THEN lett.autndown(p);
If rlght•/•NONE THEN rlght.autndown(NEW IUM(~~t,aublcrlpt)l

END of prooedure autndownr
END of eNN vectorSUWit

I"~ 'J a. Algor1tlun ~or ~1nd1ng x,.

Sequential
Machine Tree Machine

apace tiae processors tiae

Heap Sort n nlog2 n n D

Matrix 2 3 2 2
Mult.iplicat.ion n -n D D

n n 2
Color Coat D n D D

Transitive 2 3 a a
Closure D D D D

XI D n D log2 n

r1gure f4. BttqUent1al and Tree Macla1ne Pedormano•.

4 '/b

CALTECH CONFERENCE ON VLSI, January 1979

476

The Ringmachine algorithm is straightforward. Starting with the

vector a distributed as in Figure 12, each processor adds numbers

that are passed in from the left to the ai it holds before passing

them on. After the ith processor has seen i-1 numbers, 1t sends a1

to the right and becomes dormant . The nth processor waits n-1 time

steps for a1. The other n-2 elements arrive in the next n-2 time

steps, and are added to an to form xn. Thus the process 1s complete

after Zn~t cycles.

The algorithm on the tree machine is not as simple. The arrangemen~

of the a1's given in Figure lZ is not intuitive. And the algorithm

requires data to flow up and down the tree simultaneously. The

SIMULA code is given in Figure 13 .

The summing starts in the lower left hand corner of the tree. Each

node gets partial sums from its left and right children . The left

hand sum is added to the a1 in the processors, stored as x 1, and

passed to the right child . Then the sum from the right child is

added in, and this result, the sum of all three numbers available,

1s sent to to the parent processor. It takes log2 n cycles for t~e

root to receive the sum of the a1•s in the 1Aft half of the tree,

and another log2 n steps for that sum to filtAr down to the lower

right corner, forming x".

The algorithm described above uses the extra communication paths of

tne tree to advantage. It remains to be seen if the problem can be

put back into the numerical analysis context from which it came,

and st111 perforM better on the tree than on the Ringmachine.

Conclustons.

The work described in this paper

questions. First, are multiprocessor

what kind of system should be built?

is aimed at

systems useful?

deciding

And if

two

so,

The answer to the first question is a resounding yes . Figure 14

ARCHITECTURE SESSION

Computations o n a Tree of Processor s

compares the performance of the algorithms described here on

sequential machines and the tree machine . In each case, the time

complexity 1s substantially reduced .

The second question does not yet have a clear answer. I am just

beginning to examine problems that can use the three-neighborness

of the tree to advantage. Unless the additional complexity of

building a tree rather than a Ringmachine can be justified, the

simpler structure is heavily favored . I am hopeful, however, that

numer1cal analysis problems will demonstrate the value of the tree

•ach1ne.

477

CALTECH CONFERENCE ON VLSI, January 1979

478

Be1'erences

[1] Aho, A.V., J . E. Hopcroft , and J.D. Ullman

The Design and Analysis of Computer Algorithms

Addison Wesley, Reading, Massachusetts, 1974

Sal ly A. Browning

[2] Birtwistle, G. M., 0-J Dahl, B. Hyhrhaug , K. Nygaard

SIMULA BEGIN

Petrocelli, New York, 1973

[3] Brown1ng, Sally A.

•rrans1tive Closure and the Tree Machine•

Computer Science Department Display file 12402

California Institute of Technology, 1978

[4] Dahl, 0-J, E. V. Dijkstra, C.A.R. Hoare

Structured Programm1ng

Academic Press, New York, 1972

[5] Demuth, H. B.

•Electronic Data Sorting•

PhD. Thesis (Stanford University, October 1956)

[6] Oijkstra, E. W.

A Discipline of Programming

Prentice-Hall, Englewood Cliffs, New Jersey, 1976

[7] Ullner, Hike

•Ringntachine•

Computer Science Department Display file in progress

California Institute of Technology, 1978

[8] Varshall, S.

•A Theorem on Boolean Matrices•

J.ACM 9:1, p.ll-12

ARCHI TECTURE SESSION

