403

Computations on a Tree of Processors

Sally A. Browning
Computer Science Department
California Institute of Technology
Pasadena, California 91125

Because processors and memories are both implemented in siTicon, it
is worthwhile to consider architectures that mingle both functions
on a single chip. With the VLSI promise of a million or so devices
on a chip, several hundred processors can communicate with each
other at on-chip speeds.

But 1in order to manage the complexity of such a chip, both when
designing it and when testing it, the interprocessor communication
paths should be regular and simple. This paper examines the utility

of a particular interconnect scheme, a binary tree.

The processors are arranged as a binary tree: each processor except
the root has a single parent, and each processor except those at
the leaves of the tree has two descendents. This arrangement models

the hierarchical communication found in large organizations.

The binary tree architecture has some interesting aspects that make
it a good choice for a general purpose structure. Any particular
processor 1n a tree of n processors can be accessed in at most
log,n time. This compares favorably with the O(n) access time for a
linear arrangement of oprocessors, or the OG/n) access time if the

processors are arranged in a rectangular array.

The number of processors available increases exponentially at each
Jevel in the tree machine. If the problem to be solved has this
growth pattern, then the tree geometry will match the problem. By

The research described 1in this paper was sponsored by the Defense
Advanced Research Projects Agency under contract number
N00123-78-C-0806.

CALTECH CONFERENCE ON VLSI, January 1979

454 LComputations on a Tree of Processors

contrast, processors arranged as a list have a constant number of
processors (namely 1) available at each level. And rectangular
arrays make a polynomial number of processors available at each
level, according to the allocation scheme chosen. Figure 1
demonstrates this property of the three structures.

These three schemes are the simplest ways to connect processors
together. They provide each processor with two (the 1list), three
(the tree), or four (the square array) neighbors. Each has
advantages over the others, and each has a fan club.

The point of my research is to determine whether or not there is a
predominate geometry to the problems that might be solved on a
highly concurrent machine. If such a geometry exists, and a
hardware implementation is realizable in silicon, then that machine
should be built.

Since the tree architecture appears to have more flexibility than
the other two structures, I have concerned myself mostly with it.
This paper will describe several algorithms that have been
successfully mapped onto the tree. In later sections, the
Ringmachine, a linear array of processors proposed by Mike
Ullner[7], will be introduced in order to show that problems that
are dominated by 1loading and unloading do not require the
additional communication paths available 1in the tree. 1ne final
section of the paper describes a problem from numerical analysis
that makes effective use of the tree machine. The paper ends with
some comments about the direction future investigations will take.

A Digression into Programming Notation.

The processors 1in the tree have some characteristics that must be

emphasized by the notation used to describe them.

First, each processor 1is a general computing machine with some

amount of local store. A template that Hescribes both the program

ARCHITECTURE SESSION

Computations on a Tree of Processors 455

O A\

List ;ree1
P;"l 1=
p=1 po= 2

Corner Center
R=1 R= 1
Pz Ryt l =

P, = number of processors at level i.

Figure 1. Processors Available at each Level.

CALTECH CONFERENCE ON VLSI, January 1979

456 Sally A. Browning

and the data that will characterize each processor. This template
will be instantiated as many nodes of the tree.

Communication between each processor, its parent, and its children
should be limited to explicitly defined entry points. That is,
there 1is no omnipotent entity that is able to oversee and influence
the actions of other processors except as explicitly described.
Each processor can expect to have local sovereignty, and can only

be affected by communication it expects.

And perhaps most importantly, locality should be encouraged in the
problem solutions. Communication between processors requires
synchronizing their actions, 1limiting the amount of concurrency
that can be achieved.

The notation that embodies these criteria is the class construct
described by Dahl and Hoare [4]. The class allows the programmer to
define as a single entity both a data structure and the procedures
that operate on it. Thus the implementation details are known only
to the class itself. Each object is an instance of a class, and can
be thought of as a machine, capable of 1local computation but
responding to well-defined requests from the outside world.

The most widely known programming language that incorporates the
class construct is SIMULA 67 [2]. SIMULA extends the syntax of
Algol 60 with cTass definitions. I will use a modified version of
the SIMULA syntax to describe the nodes in the processor tree. The
syntax for a class declaration can be described in BNF as follows:

<class declaration> ::= class <class identifier>
{formal parameter part)>;
<attribute part>;
{class body>

{class body> ::= {(statement)

ARCHITECTURE SESSION

Computations on a Tree of Processors 457

In order to describe highly concurrent algorithms despite the
sequential nature of SIMULA, the meaning of the semicolon symbol is
changed. In wvanilla SIMULA, semicolon 1is used to terminate a
statement. Instead, read semicolon as "At this point, all
statements 1in progress must be terminated before advancing to the
next statement®™. Linefeed will be used to indicate syntactic end of
the statement. In other words, Jlinefeeds are used to separate
statements; semicolons are used to separate groups of statements
that can execute concurrently. E. W. Dijkstra introduces this
semicolon convention in [6].

Making Arbitrary Branching Ratios.

While the physical structure of the tree restricts each processor
to two descendents, a logical structure can be imposed on the tree
to accomodate an arbitrary branching ratio. Each logical processor
consists of several physical processors, enough to provide the
desired number of offspring. A logical node with n children is
built from n-1 physical nodes and is]ugzn levels deep. Figure 2
shows some sample 1logical processors. Figure 3 gives a SIMULA
representation of the algorithm used to simulate arbitrary
branching ratios.

A1l of the algorithms described in this paper will describe logical
processors and the logical structure of the tree. The SIMULA code
assumes the existence of the logical processor defined in Figure 3,
and builds definitions based on it. The complexity of each
nlgoriihm will be calculated for the physical structure, however.

Sorting.
A binary tree with depth 1agzn can be used to sort n numbers. The

sort is accomplished as a byproduct of 1loading the numbers 1into
memory and then reading them out again. The numbers themselves are

CALTECH CONFERENCE ON VLSI, January 1979

458 Sally A. Browning

R

Figure 2. Logical Processors with 2 to 6 Descendents
(solid colaor boxes comprise the logical processor)

CLASS Nede(n); INTEGER n;
BEGIN
REF(Node)left,right;

linit code to build logical node;
IF n>2 THEN left:-NEW Node((n+1)//2);
IF n>3 THEN right:~-NEW Node(n//2);

END of CLASS Node;

Node CLASS Processon;
BEGIN

REF(Processor) PROCEDURE Son{(s); INTEGER s;
BEGIN REF(node)p;
pi1=IF s<=(n+1)//2 THEN left ELSE right;
WHILE NOT (p IN Processor) DO
p1=1F s<=(p.n+1)//2 THEN p.left ELSE p.right;
Sem-py
END of PROCEDURE Som

END of CLASS Processor,;

Figure 3. Making Arbitrary Branching Ratios

ARCHITECTURE SESSION

Computations on a Tree of Processors 459

never in sorted order internally, but come out of the tree in the

desired order.

Sorting is a particularily interesting example because 1t.
illustrates a fundamental issue in concurrency. It is well known
that sorting on a sequential machine can be done with 0(n1ogzn)
compar isons. However, 1t has been shown on very fundamental grounds
that 1if communication is restricted to nearest neighbors, at least
nz comparisons are required[5]. The apparent advantage of the
O(nlogzn) algorithms comes as a direct result of Jlonger
communication paths. It is also clear that no scheme will be able
to produce an ordered set of numbers until all numbers are loaded
into the machine. This means that the best achievable time
complexity is O(n).

The algorithm I wuse 1is an implementation of heap sorting. The
algorithm that runs in each processor, given in Figure 4, has a
procedure for Jloading the tree called Fillup and a procedure
invoked during the output cycle called Passup.

Fillup keeps the Jlargest number seen to date, and passes the
smaller one to the right or left child, keeping the tree balanced
by alternating sides.

Passup returns this processor's current number and refills itself
with the larger of the numbers stored in 1its descendents. This
action 1is pipelined so that the largest number is always available

in the root.
This sort algorithm 1is bounded by the time it takes to Jload and

remove the numbers. Thus it has time complexity O(n). It requires n

processors, one for each number to be sorted.

CALTECH CONFERENCE ON VLSI, January 1979

460

Processor CLASS HeapSort;
BEGIN

INTEGER number;
BOOLEAN balanced,empty;
REF(processor)ieft,right;

PROCEDURE fillup(candidate); INTEGER candidate;

BEGIN
IF empty THEN
BEGIN
number: *candidate
empty:=FALSE;
END
ELSE
BEGIN
IF candidate>number THEN lawap;
BEGIN INTEGER t;
t:=candidate;
candidate: =number;
number:=t;
END;
IF balanced
THEN left.fillup(candidate)
ELSE right.fillup(candidate);
balanced:=NOT balanced;
END;
END of procedure fillup;

INTEGER PROCEDURE passup;
BEGIN
passup:=number;

IF left==NONE AND right==NONE THEN empty:=TRUE lits a leaf;

ELSE
IF loft.empty THEN
BEGIN

IF right.empty THEN empty:=TRUE Iboth subtrees empty;
ELSE number:=right.passup; Ifill from right son;

END
ELSE

IF right.empty THEN number:=left.passup Iflll from left son;

ELSE number:=IF left.numberd>right.number
THEN left.passup ELSE right.passup;
1take the larger of the two;

END of procedurs passupnumber;

linit code;
empty:=TRUE;
balanced:* TRUE;
llaft and right set;

END of class HeapSort;

Figure 4. Heap Sort

ARCHITECTURE SESSION

Sally A. Browning

Computations on a Tree of Processors 461

Matrix Multiplication.

Consider the problem of multiplying two nxn matrices tdgether. The
tree machine algorithm that provides the answer in the least amount
of time divides the multiplicand into rows and the multiplier into
columns, pipelines the 1loading and multiplication of pairs of
single elements. This process requires O(nz) processors and takes
O(nz) time, a processor and time product of O(n‘). If each
processor has enough memory to store a row of the matrix instead of
a single element, the algorithm would require 0O(n) processors,

resulting in the more familiar O(na) product.

The algorithm makes use of a tree that has a branching ratio of n
at each node, and 1is two 1levels deep. The root node has n
descendents, each controlling n leaves of the tree. Then there are

nz leaves and a total of 2n2~1 processors.

Each child node of the root, hereafter called a row supervisor,
will represent a row of the multiplicand matrix, and produce a row
of the product matrix. Each of the n descendents of a row

supervisor will hold one element of the row.

The algorithm is given in Figure 5. The multiplier matrix is loaded
into the tree one element at a time, by column. The root hands each
element to all row supervisors, which send it to their appropriate
leaf: the first element in any column goes to the first child of
each row supervisor, the nth element to the nth child. That child
mulitiplies the multiplier element by the multiplicand element it
holds, and returns the product to the row supervisor. When an
entire column of the multiplier has been loaded into the tree, each
row supervisor takes the n products generated in its children, adds
them, and returns one element in the corresponding column of the
product matrix. That 1s, when the first column of the multiplier
has been loaded into the tree, the first column of the product

matrix is available, and so on.

This process can be pipelined to take O(nz) time. Thus the time it

CALTECH CONFERENCE ON VLSI, January 1979

462

Processor CLASS Rowsupervisor;

BEQIN

Ithe matrix size, N, la an stiribute of CLASS Processor, and is avallable
to us;

REAL preduct;
INTEGER count;

PROCEDURE Load(eslement); REAL slement;
BEGIN

count:*count+1;

son{ count].load(element);

IF count=N THEN count:=0;
END of procedure Load;

REAL PROCEDURE Mulitiply(eiement); REAL element;
BEGIN
count:*count + 1;
product:=product ¢+ son{ ceunt].muitiply(siement);
IF count=N THEN
BEGIN
multiply:=product;
count:=0y
product:=0.0;
END;
END of procedurs Multiply;

Iinitialization;
counti=0
product:=0.0;
END of clasa Rowsupervisern;

Processor CLASS Leaf;
BEGIN

REAL rowelement;
PROCEDURE Load(element); REAL slement;

BEGIN
rowelementi=element;

END of procedure Load;
PROCEDURE Multiply(element); REAL element;
BEGIN
multiply:zrowsiement * slemsnt;
END ef procedure Multiply;

END of ciass Leaf;

Figure 8. Matrix Multiplication

ARCHITECTURE SESSION

Sally A. Browning

Computations on a Tree of Processors 403

takes to load the n® elements of the matrices dominates the time
complexity of the problem. Remember, however, that matrix
operations are meaningless except in the context of the driving
problem. The entries in the matrix are not so much loaded as
generated, and the generation time may be less than O(nz). Care
must be taken, however, to generate the matrix entries in the
arrangement used by the multiplication algorithm; moving elements

around in the tree is costly.

The Color Cost Problem,

This NP-complete probiem is an adaptation of the K-colorability
problem. Given an undirected graph 6 of n nodes and a set of n
colors, each with an associated cost, find a minimum cost coloring
of the graph such that no nodes sharing an edge are the same color.

There are n" possible colorings of the graph. Evaluating them
sequentially produces a solution in time O(n"). I present a
parallel algorithm of order na.

Each 1level 1in the processor tree represents the consideration of
another node. That is, level one shows possible colors for the
first node, 1level two colors the second node based on the choices
made for at level one, and so on. I will describe the generation of
the potential colorings.

Each processor, described in Figure 6, has an edge list called edge
and a 1ist of costs 1indexed by color number called colorcosts.
There 1is an array called coloring that reflects the color choices
for preceding nodes, and a boolean array called colors that is used

to generate the possible colorings for this node.

The algorithm, given 1in procedure color, begins by assuming that
all colors yield valid colorings. The array coloring 1is used to
eliminate those colors that have been used to color nodes that
share an edge with this node. This reduced set of colors, all of

CALTECH CONFERENCE ON VLSI, January 1979

464 P A

Processor CLASS ColorCost;
BEGIN

BOOLEAN ARRAY edge[1:n,1:n),colors[1:n];
INTEGER ARRAY coloring[1:n],colorcosts[1:n];
INTEGER cost;

PROCEDURE color(node); INTEGER node;
BEGIN INTEGER |;
IF node>n THEN
BEGIN
cost:=0y
FOR k=1 TO node-1 DO costizcost+colorcost[coloring[1]];
END
ELSE
BEQIN
FOR hi#1 TO node-1 DO IF edge[1,node] THEN
colors[coloring[1]):*FALSE;
FOR i:=1 TOn DO
IF colors[1] THEN
BEGIN
son(i).coloring[node]:=|
son(i).color(node+1);
END
ELSE son(l):-NONE;
cost:=marcost;
FOR i:=1 TOn DO
IF (IF son(l) = NONE
THEN FALSE ELSE cost)>son(i).cost)
THEN cost:=son(l).cost;
END;
END eof procedurs color;

END of class ColorCoat;

Figure 8. Color-Cost Problem

ARCHITECTURE SESSION

A2 L \JVWYLL J.llB

Computations on a Tree ot Processors 465

Symbol Color Cost
£l Blue 2
G Green 1
R Red 0

Figure 7. Color-Cost Example: Graph and Color List

Figure 8. Color-Cost Example: Solution Tree

CALTECH CONFERENCE ON VLSI, January 1979

466 Sally A. prowning

which are 1legal colorings, 1is used to spawn descendents, one for

each coloring of this node.

When the tree 1is n levels deep all the legal colorings have been
generated. The leaf nodes calculate a cost for the coloring they
represent, and each parent node takes as its cost the least cost
among its children. Thus the minimum cost coloring is stored at the

root.

An example 1s 1in order. A sample graph and color set are given in
Figure 7. Figure 8 shows the colorings and costs arrived at by the
algorithm. Each 1level of the tree represents a node of the tree.
That is, if the root is level 0, the first node is colored in level
1, and 1level 3 represents potential colorings for the third node.
Besides representing a part of a coloring, each node also contains

the minimum cost coloring found among its descendent colorings.

The minimum cost of coloring the sample graph is 1, and is achieved
by coloring nodes (1,2,3) (red,green,red).

When the color cost problem is solved in a brute force manner on a

sequential machine, it takes exponential time. The tree machine can

solve the problem in O(nz) time using an exponential number of
processors. So on either machine, this problem exhibits exponential

growth.

Transitive Closure.

Given a directed graph G, the transitive closure of G, G*, can be
generated. The arcs of 6* are subject to the following condition:
for every arc (v,w) in G* there is a path, (v,e,),(e,,ez). i
(e,,w), in 6.

The best sequential algorithm for generating the transitive closure

of a graph is attributed to Warshall[1,8]. The algorithm uses three
FOR 1loops - that run through the incidence matrix adding arcs. After

ARCHITECTURE SESSION

Computations on a Tree of Processors 467

k steps of the outer loop, there is a path from vertex i to vertex
J through vertices in the set {1,2,...,k} if and only if B[i,Jj]=1.
On a sequential machine, this algorithm takes O(na) time. The code

is given in Figure 9.

A direct mapping of Warshall's algorithm onto the tree machine
yields a rather boring n3 algorithm that merely spreads the three
iterative steps among the processors in the tree.

There 1is a much more fruitful path to take. By understanding what
actually happens during the execution of the algorithm, an
effective mapping of Warshall's algorithm onto the tree machine is
discovered.

There are two key points to be made about Warshall's algorithm.
First, the algorithm is cascading. Newly created arcs can effect
the creation of yet more arcs. Any realization of the algorithm
must allow for this characteristic. It is not sufficient to
consider only the arcs in the original graph.

Also 1important 1is the comparison between arcs. In Figure 9 this
comparison is stated as

IF b[1,3] AND b[Jj,k] THEN b[1i,k]:=TRUE;

In English, this reads "if there is an arc from i to J, and an arc
from jJ to k, then create an arc from i to k".

Suppose that instead of an incidence matrix, there is a list of
arcs. This 1ist will be used as input to the tree machine. The
output is the 1ist of arcs in the transitive closure.

The tree has a root node, n descendents of the root that are

- descendents of the vertex

instances of the class vertex, and n
processors described by the class toVertex.- The vertex processors
represent the n nodes in the graph. The toVertex processors are the

n possible arcs from each node. Jim Rowson deserves special thanks

CALTECH CONFERENCE ON VLSI, January 1979

468

Sally A. Browning

for distilling my complicated structure into this very simple one.

The arcs 1in the original graph are used only as the starting place
and are indistinguishable from generated arcs. As new arcs are
created, they are considered by all the vertex processors just as
the original arcs are.

Arcs are created using a8 variant of the Warshall comparison. An arc
has a starting point, fromV, and an ending point, toV. Each arc is
considered by all the vertex processors. Each vertex will create an
arc by turning on dits appropriate descendent if one of two
conditions 1is true. Either this vertex must be the starting point
of the arc, or there must be an existing arc from this vertex to
the starting point.

The first condition takes care of the arcs in the original graph.
The tree starts out with no arcs. As the original arcs are Jloaded
into the tree, the first condition is true and arcs are created.

The second condition is the Warshall comparison. Suppose the arc
(v,w) is being considered by vertex u. If arc (u,v) exists then arc

(u,w) is created. This is how new arcs are created.

As each arc 1is created, by satisfying either criterion, it is
broadcast throughout the tree; it might effect the creation of

other arcs.

The code for this algorithm is given in Figures 10 and 11. Figure
10 shows the properties common to all three kinds of processor
nodes, and defines some auxiliary classes used for queueing and
passing data between processors. Figure 11 is the definition of the
three processors, including the procedures that implement the
revised Warshall algorithm.

The key routines are load and unload. Procedure load appears in the
root and vertex processors and is used to pass arcs through the
system. Unload is in the root. Each call on unload yields an arc in

ARCHITECTURE SESSION

Computations on a Tree of Processors 469

BOOLEAN ARRAY B[1:n,1:n];
INTEGER I,),k;

FOR k:=1 to n DO
FOR I:=1 to n DO
FOR):*1 to n DO
IF B[1,kx] AND B(k,}] THEN B[1,}):=TRUE;

Figure 8. Warshall’'s Algorithm (Sequential Machine)

CLASS processer;
BEGIN

REF(processor) array son[1n];
REF(processor) parent;

END of class processor;

processor CLASS Qprocessor;
BEGIN

REF(head)Q;
PROCEDURE InsertinQ(qe); REF(queusEiement)qe; ge.into(Q);
REF(queueElement) PROCEDURE firstinG;
BEGIN REF(queueElement)qe;
firatinQ:-qe:-Q.firat;
ge.out;
END of procedure firstin;
Qi1-NEW head;
END of class Qprocessor;

link CLASS queueE lement(myOwner); REF(Qproocessor)myOwner;
BEGIN

END of class queusElement;

CLASS sdge(fromV,toV); INTEGER fromV,toV;
BEGIN
END of class edge;

Figure 10. General Processor Definition and Auxilary Classes

CALTECH CONFERENCE ON VLSI, January 1979

470 Sally A. Browning

Qprocessor CLASS root;
BEGIN-
PROCEDURE load(e); REF(edge)e;
BEGIN INTEGER Iy
FOR li=1 STEP 1 UNTIL n DO son{i).load(e);
END of procedure load;

REF(edge) PROCEDURE unload;
BEGIN
IF Q.empty THEN unload:-NONE
ELSE BEGIN REF(queusElement)qe; REF(edge)e;
qe:-firstinQ,
uniocad: -e:-ge.myOwner.nextEdge;
load(e);
END;
END of procedurs unioad;

BEGIN Integer |
FOR l:i=1 STEP 1 UNTIL n DO son[1]):-new vertex(i);
END of init code;
END of class roet;

Qprocessor CLASS vertex(myNode); INTEGER myNode;
BEGIN

REF(queueElement)qe;

BOOLEAN gueued;

REF(edge) PROCEDURE nextEdge;
BEGIN REF(queueElement)qt;
qt:-firstinQ;
nextEdge:-NEW edge(myNode,qt.myOwner.myNode;
IF NOT Q.empty THEN parent.insertinQ(ge)
ELSE queued:=FALSE;
END of procedurs nextEdge;

PROCEDURE load(e); REF(edge)e;
BEGIN
IF o.fromV=myNode OR son{e.fromV).edgeexits
THEN BEGIN
son[e.toV].markedge;
IF NOT gqueued
THEN BEGIN
parent.insertinQ(ge);
queued:*TRUE;
END;
END;
END of procedure load;

queued:=false;
qe:-NEW gqueueEiement(THIS vertex);
BEGIN INTEGER I3
FOR i:=1 STEP 1 UNTIL n DO son{i]):~-new toVertex(i);
END of init code;
END of clasa vertex;

Figure 11. Revised Warshall Implementation (Continued on next page)

ARCHITECTURE SESSION

Computations on a Tree of Processors

Qprocessor CLASS teVertex(myNode); INTEGER myNode;
BEGIN

REF(queueElement)qge;

BOOLEAN edgeExists;

PROCEDURE markEdge;
BEGIN
IF NOT sdgeExists
THEN BEGIN
edgeExists:=*TRUE;
parent.insertinQ(qe);
END;
END of procedurs markEdge;

edgeEnists:=FALSE;
qe:-NEW queueElement({THIS toVertex);
END of class edge;

Figure 11. Revised Warshall Algorithm Implementation

Figure 12. Arrangements of a in the Tree and Ringmachine

471

CALTECH CONFERENCE ON VLSI, January 1979

47

Sally A. Browning

the transitive closure.

Each arc 1in the original graph is aiven to the root via a call on
procedure Inad. The arc is passed to all vertex processors. There,
on the second level, epach vertex executes the test described above

to see if the arc causes the creation of an arc from this vertex.

Once all the arcs of the original grapn have been loaded, the arcs
of the transitive closure are available for unloading. As an arc is
handed to the outside world by a call on the root's unload
procedure, it 1is passed back down the tree to the vertex
processors, Just as the original arcs were, by a call on procedure
load.

A double system of queues is used to indicate the availability of
arcs for the unloading and broadcasting operations. The queue 1in
the root 1is used by the vertex processors to indicate willingness
to provide an arc to the root. When an arc is unloaded, it 1is also

broadcast through the tree via the load routine. The aueue in the
vertex processors i1s used by the toVertex processors to indicate

that another arc has peen created.

The queues are used to avoid polling the vertexs and toVertexs from
available arcs. The polling introduces two 1iteration statements

which are executed for each arc in the transitive closure. They

cloud the issue by appearing to affect the complexity. The queues,

on the other hand, simulate the hardware nicely. The two upper

levels of the tree need to respond to a signal from any one of

their children. The queues provide this effect.

The algorithm as described above and 1in Figure 11 has time
complexity of the order of the number of arcs 1in the <transitive
closure. The maximum number of arcs in a directed graph of size n,
is n'; the transitive closure is itself such a graph, 1is nz. Thus
the time complexity of this algorithm is O(nz), limited by the time

it takes to read out the arcs of the closure.

ARCHITECTURE SESSION

Computations on a Tree of Processors 473

As described, 2n%-1 processors are used to generate the closure. A
solution using only n+l1 processors, yet essentially the same, can
be devised. Suppose each vertex processor, now the leaves of the
tree, contains a boolean array instead of using toVertex processors
tol represent existing arcs. The vertex processors have more local
store, and a parameter of the problem, the size of the graph, has
been 1introduced 1into the physical requirements for each processor.
This is something I want to avoid. It is, however, a perfectly
valid impiementation, and indeed, retains the 0(n3) total
complexity.

Is the Tree Machine Magic?

1t 1is time to address the question of whether these problems need
the tree machine structure. The answer is simple. No. I will give

an alternative architecture that yields an equivalent solution.

Mike Ullner has oroposed the Ringmachine [7], a "tree of branching

ratio one®. The structure is a doubly-linked ring of processors, or

more simply, a linear pipeline.

This structure is also capable of doing transitive closure in O(nz)
time using O(n!) processors, and the code is as simple as that for
the tree machine implementation. The Ringmachine algorithm is given
in detail in [3].

The key to the O(nz) solution is the pipeline, not the
communication path. In fact, sorting and matrix multiplication are
also problems 1in this class. The size of the answer determines the
size of the problem. Any pipelined structure that can spew out

answers one at a time in a continuous stream is adequate.

So what 1is the tree machine better at? The difference between the
tree and the ring i1s that any particular node in the tree can be
total number of processors. Problems that have one answer that can

be in any of a large number of processors can take advantage of the

CALTECH CONFERENCE ON VLSI, January 1979

474 Sally A. Browning

tree structure. NP-complete problems, like the color cost problem
treated earlier, are a graphic example of this. Those problems
require an exponential number of processors, however, and thus are

not practical.

An Algorithm that Uses the Tree Effectively.

T have found a problem that does make wuse of the extra
communication paths in the tree. It is taken from numerical
analysis, and 1s presented here out of context. The problem is to
generate a vector x from a vector a according to the following
rule:

-

=

In other words, the ith element of the vector x is the sum of the
first 1 elements of the vector a. This problem 1is solvable on a
saquential machine in O(n) time.

If the tree machine and Ringmachine are treated as peripheral
functional units that are given a and produce x, the performance of
the two machine 1is identical. Loading and unloading the vectors
again dominates the time complexity. In each case, n processors are
used to solve the problem in O(n) time.

A more interesting formulation of the problem assumes that the tree
and Ringmachine are already loaded with some convenient arrangement
of a. How fast can x be generated, with x ending up in the same

arrangement as a?

Given the arrangements shown in Figure 12, the Ringmachine uses n
processors to generate x in place in O(n) steps. The tree machine,
on the other hand, uses n processors, but arrives at the answer in
O(log,n) steps. For large n, this is a significant difference.

ARCHITECTURE SESSION

Ltomputations on a ‘'Il'ree ot Processors 475

CLASS sum(s,max); INTEGER s,max;
BEGIN END;

Precessor CLASS vectorSum;
BEGIN
INTEGER aubscript;
INTEGER x;

REF(sum) PROCEDURE sumup;
BEGIMN
IF left==NONE AND right==NONE
THEN sumup:~-NEW sum(x,subscript)
ELSE BEGIN REF(sum)i,r;
I:=IF feft==NONE THEN NEW sum(x,subscript) ELSE left.aumpup;
r:=I¥ right==NONE THEN NEW sum(x,subscript) ELSE right.aumpup;
Ri=xel.8;
sumup:~-NEW sum(a+r.a,r.max);
left.sumdown(l);
right.sumdown({NEW sum(x,subscript));
END;
END of proesedure sumup;

PROCEDURE sumdown(p); REF(sum)p;
BEGWN
IF p.max{subscript THEN x:=x+p.8;
IF left=/=NONE THEN left.sumdown(p);
IF right=/=NONE THEN right.sumdown(NEW sum(x,subscript);
END of procedure sumdown;
END of class vectorSumy

Figure 13. Algorithm for finding x,.

Sequential
Machine Tree Machine

space time processors time
Heap Sort n nlog,n n n
Matrix 2 3 2 2
Multiplication n ~n n n

n n 2

Color Cost n n n n
Transitive 2 s 2 2
Closure n n n n
X, n n n logzn

Figure 14. Sequential and Tree Machine Performance.

CALTECH CONFERENCE ON VLSI, January 1979

476

The Ringmachine algorithm is straightforward. Starting with the
vector a distributed as in Figure 12, each processor adds numbers
that are passed in from the left to the ai it holds before passing
them on. After the ith processor has seen i-1 numbers, 1t sends ai
to the right and becomes dormant. The nth processor waits n-1 time
steps for a,. The other n-2 elements arrive in the next n-2 time
steps, and are added to a, to form x . Thus the process is complete
after 2n-1 cycles.

The algorithm on the tree machine is not as simple. The arrangement
of the ai's given in Figure 12 is not intuitive. And the algorithm
requires data to flow up and down the tree simultaneously. The
SIMULA code is given in Figure 13.

The summing starts in the lower left hand corner of the tree. Each
node gets partial sums from its left and right children. The Jleft
hand sum 1is added to the a, in the processors, stored as x;, and

passed to the right child. Then the sum from the right child is
added in, and this result, the sum of all three numbers available,
1s sent to to the parent processor. It takes log,n cycles for the
root to receive the sum of the aﬂs in the l1eft half of the tree,

and another log,n steps for that sum to filter down to the lower

right corner, forming x .

The algorithm described above uses the extra communication paths of
tne tree to advantage. It remains to be seen if the problem can be
put back into the numerical analysis context from which it came,
and still perform better on the tree than on the Ringmachine.

Conclusions.
The work described 1in this paper is aimed at deciding two
questions. First, are multiprocessor systems useful? And if so,

what kind of system should be built?

The answer to the first question is a resounding yes. Figure 14

ARCHITECTURE SESSION

Computations on a Tree of Processors 477

compares the performance of the algorithms described here on
sequential machines and the tree machine. In each case, the time

complexity is substantially reduced.

The second question does not yet have a clear answer. I am just
beginning to examine problems that can use the three-neighborness
of the tree to advantage. Unless the additional complexity of
building a tree rather than a Ringmachine can be justified, the
simpler structure 1is heavily favored. I am hopeful, however, that
numerical analysis problems will demonstrate the value of the tree

machine.

CALTECH CONFERENCE ON VLSI, January 1979

478 Sally A. Browning

References

[1] Aho, A.V., J.E. Hopcroft, and J.D. Ullman
The Design and Analysis of Computer Algorithms
Addison Wesley, Reading, Massachusetts, 1974

[2] Birtwistle, 6.M., 0-J Dahl, B. Myhrhaug, K. Nygaard
SIMULA BEGIN
Petrocelli, New York, 1973

[3] Browning, Sailly A.
"Transitive Closure and the Tree Machine”
Computer Science Department Display file #2402
California Institute of Technology, 1978

[4] 0Oahl, 0-3, E.W. Dijkstra, C.A.R. Hoare
Structured Programming
Academic Press, New York, 1972

[5] Demuth, H.B.
"Electronic Data Sorting"
PhD. Thesis (Stanford University, October 1956)

[6] Dijkstra, E.W.
A Discipline of Programming
Prentice-Hall, Englewood Clifts, New Jersey, 1976

[7] uliner, Mike
"Ringmachine”
Computer Science Department Display file in progress
California Institute of Technology, 1978

[8] Warshall, S.

"A Theorem on Boolean Matrices"
J.ACM 9:1, p.11-12

ARCHITECTURE SESSION

