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Because processors and memories are both implemented in silicon, it 

is worthwhile to consider architectures that mingle both functions 

on a single chip . With the VLSI promise of a million or so devices 

on a ch1p, several hundred processors can communicate with each 

other at on-ch1p speeds. 

But in order to manage the complexity of such a ch1p, both when 

designing 1t and when testing 1t, the interprocessor communication 

paths should be regular and simple. This paper exa~ines the utility 

of a particular interconnect scheme, a binary tree . 

The processors are arranged as a binary tree: each processor except 

~ne root has a single parent, ana each orocessor except those at 

thA leaves of the tree has two descendents. This arrangement models 

the hierarchical communication round 1n large organizations. 

The binary tree architecture has some interesting aspects that make 

it a good choice for a general purpose structure. Any particular 

processor in a tree of n processors can be accessed in at most 

log2 n time. This comoares favorably with the O(n) access time for a 

linear arrangement or orocessors, or the O(~) access time if the 

processors are arranged in a rectangular array. 

The number of processors available increases exponentially at each 

level 1n the tree machine. If the problem to be solved has this 

growth pattern, then the tree geometry will match the problem. By 
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454 computations on a Tree of Processors 

contrast, processors arranged as a list have a constant number of 

processors (namely 1) available at each level. And rectangular 

arrays make a polynomial number of processors available at each 

level, according to the allocation scheme chosen . Figure 1 

deMonstrates this property of the three structures . 

These three schemes are the simplest ways to connect processors 

together. They provide each processor wi th two (the list), three 

(the tree), or four (the square array) neighbors. Each has 

advantages over the others, and each has a fan club. 

The point of my. research is to determine whether or not there is a 

predominate geometry to the problems that might be solved on a 

highly concurrent machine . If such a geometry exists , and a 

hardware implementation 1s realizable in silicon, then that ~achine 

should be bu11t. 

Since the tree architecture appears to have more flexibility than 

the other two structures, I have concerned myself mostly with it . 

Th1s paper will describe several algorithms that have been 

successfully mapped onto the tree. In later sections , the 

Ringmachine, a linear array of processors proposed by Hike 

Ullner[7] , will be introduced in order to show that problems that 

are dominated by loading and unloading do not require the 

additional communication paths available in the tree . 1ne final 

section of the paper describes a problem from numerical analysis 

that makes effective use of the tree machine . The oaoer ends with 

some comments about the direction future investigations will take. 

A Digression into Programming Notation. 

The processors in the tree have some characteristics that must be 

emphasized by the notation used to describe them. 

First, each processor is a general computing machine with some 

amount of local store. A template that tlescr i bes both the program 
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Ust 
Pt= 1 
P1 = 1 

Corner 
P1 = 1 
PI "" Pe-t + 1 

. 

A 
Tree 
pl = 1 
P. = 21·1 
I 

Center 
P. = 1 
~ = i2 I 

i\ 

P1 s number of processors at level i. 

l'I&IUW J. Proce••or• Available at eacll Level. 
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and the data that will characterize each processor. This template 

will be instantiated as many nodes of the tree . 

Communication between each processor, its parent, and its children 

should be limited to explicitly defined entry points. That is, 

there is no omnipotent entity that is able to oversee and influence 

the actions of other processors except as explicitly described . 

Each processor can expect to have local sovereignty, and can only 

be affected by communication it expects. 

And perhaps most importantly, locality should be encouraged in the 

problem solutions . Communication between processors requires 

synchronizing their actions, limiting the amount of concurrency 

that can be achieved. 

The notation that embodies these criteria is the class construct 

described by Dahl and Hoare [4). The class allows the programmer to 

def1ne as a single entity both a data structure and the procedures 

that operate on it . Thus the implementation details are known only 

to the class itself. Each object is an instance of a class, and can 

be thought of as a machine, capable of local computation but 

responding to well-defined requests from the outside world. 

The most widely known programming language that incorporates the 

class construct is SIMULA 67 [Z]. SIMULA extends the syntax of 

Algol 60 with class definitions . I will use a modified version of 

the SI"ULA syntax to describe the nodes in the processor tree. The 

syntax for a class declaration can be described in BNF as follows: 

<class declaration> :: • class <class identifier> 

<formal parameter part>; 

<attribute part>; 

<class body> 

<class body) ::• <statement> 

ARCHITECTURE SESSION 
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In order to deacr1be highly concurrent algor1th~s despite the 

aequent1•1 n•tur• of SIMULA, the meaning of the se•1colon symbol is 

changed. In vanilla SIHULA, semicolon is used to terminate a 

statement. Instead, read semicolon as "At this point, all 

statements in progress must be terminated before advancing to the 

next statement•. L1nefeed will be used to indicate syntactic end of 

the statement. In other words, linefeeds are used to separate 

statements; semicolons are used to separate groups of statements 

that can execute concurrently. E. W. Oijkstra introduces this 

se~1colon convention in [6] . 

Making Arbitrary Branching Ratios. 

While the physical structure of the tree restricts each processor 

to two descendents, a logical structure can be imposed on the tree 

to accomodate an arbitrary branching ratio. Each logical processor 

consists of several physical processors, enough to provide the 

desired number of offspring. A logical node with n children is 

built from n-1 physical nodes and is log2n levels deep. Figure Z 

shows some sample logical processors . Figure 3 gives a SIHULA 

representation of the algorithm used 

branching ratios. 

to simulate arbitrary 

All of the algorithms described in this paper will describe logical 

processors and the logical structure of the tree. The SIHULA code 

assumes the existence of the logical processor defined in Figure 3, 

and builds definitions based on it . The complex~ty of each 

algorith~ will be calculated for the physical structure, however. 

Sorting. 

A binary tree with depth log2 n can be used to sort n numbers. The 

sort is accomplished as a byproduct of loading the numbers into 

memory and then reading them out again. The numbers themselves are 
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1'1gure B. Lolflcal Proce••or• with 2 to 8 Deacendent• 
( •oltd color boxe• compriae the logical proc•••or) 

ct.ASS NMe(fl)tiNTfGER"' 
BEGIN 

RIF(Node)left.rtllttt 

llftlt o.- to butN logfcal node1 
tf ft)Z THEN left:•NEW Node((n+1 )/12)1 
If ft)a THEN rflhta•NEW NOIIe(rt//Z)a 

END of ClAU N..._ 

Rtr(PtoooaecM') PROCEDURE 8oft(a)1 INTEGER •a 
BEGIN REF(node)IJa 

lt••lf a<•(n+1 )/IZ THEN left ELM rflht1 
WHILE NOt (It IN Procouor) DO 

It•·'' a<•(~t.ft+1)/IZ THEN ll.left ELSE , .rtghtt ...... ,. 
END of PROCEDURE 8oftt 

END of CLASS ProcoaMrt 

1'1gure 3. MaJUn,g Arbitrary Branching Ratto• 

ARCHITECTURE SESSION 



Computations on a Tree of Processors 

never in sorted order internally, but come out of the tree in the 

desired order . 

Sorting is • particularily interesting example because it 

illustrates a fundamental issue in concurrency. It is well known 

that sorting on a sequential machine can be done with O(nlog2n) 

comparisons. However, it has been shown on very fundamental grounds 

that if communication is restrict.ed to nearest neighbors, at least 

n2 comparisons are required[5]. The apparent advantage of the 

algorithms comes as a direct result of longer 

communication paths. It is also clear that no scheme will be able 

to produce an ordered set of numbers until all numbers are loaded 

into the machine. This means that the best achievable 

complexity is O(n). 

time 

The algorithm I use is an implementation of heap sorting. The 

algorithm that runs in each processor, given in Figure 4, has a 

procedure for loading the tree called Fillup end a procedure 

invoked during the output cycle called Passup. 

Fillup keeps the largest number seen to date, and passes the 

smaller one to the right or left child, keeping the tree balanced 

by alternating sides . 

Passup returns this processor's current number and refills itself 

with the larger of the numbers stored in its descendents. This 

action is pipelined so that the largest number is always available 

1n the root. 

This sort algorithm is bounded by the time it takes to load and 

remove the numbers. Thus it has time complexity O(n). It requires n 

processors, one for each number to be sorted. 
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Proceaaor CLASS HeapSort, 
BEGIN 

INTEGER number; 
BOOLEAIII balanced,empty, 
REF(proceaaor)left,rlghtJ 

PftOCEDURE flllup(cMdldate), INTEGER cendldate1 
BEGIN 

IF empty THEN 
BEGIN 
n~•cand,..te 

emptra•fALSE, 
END 
ELSE 
BEGIN 

IF candtclate>nuwtber THEN lawep, 
BEGIN INTEGER t& 

ta =candidate, 
candlclatea•nuwtberJ 
numbera•t, 

END1 
IF balanced 
THEN left. tlllup(candt.s.te) 
USE rfaht. flllup( candidate), 
balanceda•NOT balanced; 

END1 
END of procedunl flllupJ 

INTEGER PROCEDURE ,.aaupl 
BEGIN 

paaau~t:cnumber, 

If left .. NONE AND rtght .. NONE THEN emptya•TRUE llta a leaf1 
ELSE 
If loft.empty THEN 
BEGIN 

tr rtght.empty THEN emptya•TRUE !both aubtntea empty; 
ELSE ~a•rtght.,.aaup, Ifill from right aon, 

END 
ELSE 
If rtght.empty THEN numbef':cteft.,.aaup Ifill frCMII left aon, 
ELSE numbera•lf left.nuwtber>rtght.number 

THEN left.,.aaup ELSE rtght.,.aaupa 
ttake the Ia,..,., of the two, 

END of proceclure ,. .. ~, 

Unit code& 
empty:•TRUEt 
balanceda•TRUE& 
!left end rfttht .... 

END of olau Hoapllort1 

P11JUre 4. Heap Sort 
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Matrix Multiplication. 

Consider the problem of mult i plying two nxn matrices together. The 

tree machine algorithm that provides the answer in the least amount 

of time divides the multiplicand into rows and the multiplier into 

columns, pipelines the loading 

single eleMents. This process 

O(n2
) tiMe, a processor and 

and multiplication of 

requires O(n2
) processors 

time product of O(n4
). 

pairs of 

and takes 

If each 

processor has enough •emory to store a row of the matrix instead of 

a single element, the algorithm would require O(n) processors, 

resulting in the more familiar O(n3
) product. 

The algorithm makes use of a tree that has a branching ratio of n 

at each node, and is two levels deep . The root node has n 

descendents, each controlling n leaves of the tree . Then there are 

n2 leaves and a total of 2n2 -1 processors. 

Each child node of the root, hereafter called a rowsupervisor, 

will represent a row of the multiplicand matrix, and produce a row 

of the product matrix. Each of the n descendents of a row 

supervisor will hold one element of the row. 

The algorithm is given in Figure 5. The multiplier matrix is loaded 

into the tree one element at a time, by column . The root hands each 

element to all row supervisors, wh i ch s end it to their appropriate 

leaf: the first element in any column goes t o the fi rst child of 

each row supervisor, the nth element to the nth child. That child 

multiplies the multiplier element by the multiplicand element it 

holds, and returns the product to the row supervisor. When an 

entire column of the multiplier has been loaded into the tree , each 

row supervisor takes the n products generated in its children, adds 

them, and returns one element i n the corresponding column of the 

product matrix. That is, when the first column of the multiplier 

has been loaded into the tree , the first column of the product 

matrix is available, and so on. 

This process can be pipelined to take O(n2
) time . Thus the t i me it 
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ProceaMr ClAU ,. .. .......,...,. 
BEGIN 
lthe Mlltttx alzo, N, Ia an attrtt~Nto of CLASS "oco•-· a.t11 I• avau--. 
to ua, 

"EAL....-ott 
INTEeER oo..tt 

PROCEDURE LoH(o'-t)l REAL .._,, 
BEGIN 

co•t••count+1, 
aon[oovnt).load(-'-"t)t 
IF eount•N THEN oCHiftts•Oa 

END of ,_ • ..,_ LoMt 

"EA,L PMJCEDURE Mtllt~.._t)t REAL .._.., 
BEGIN 

eounta•eount + 1t 
pntduota•pnMiuct + aon(.....t).MUitlply(.._.t)l 
tf co.nt•N THEN 
BEGIN 

MUittpl~a•,.-otl 

counta•Oa 
,..,., •• o.o. 

ENDt 
END of ,.cod ... Meett .. 

llnltlallntlont 
counts•Oa 
pnMhtclts•O.Oa 

END of ela .............. ... 

ProceaMf CLASS LMft 
BEGIN 

PROCEDURE LoH(o'-t)t REAL o'-11 
BEGIN rowe....._,., • .._.,, 
END of ,roce..._ Load1 

PROCEDURE Mult.,ey(•l•••nt)t "EAL .._..., 
BEGIN . 

MUitlptya•row•loooKAit • .._., 
END of llfOD•,_. Mutt .. 

T11f1UW 5. Afatrbc Mult1p11cation 
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takes to load the n2 elements of the matrices dominates the t i me 

complexity of the problem . Remember, however, that matrix 

operations are meaningless except in the context of the driving 

problem. The entries in the matrix 

generated, and the generation time may 

must be taken, however, to generate 

are not 

be less 

so much loaded as 
2 than O(n ) . Care 

the matrix entries in the 

arrangement used by the multiplication algorithm; moving elements 

around in the tree is costly. 

The Color Coat Problem. 

This NP-complete problem is an adaptation of the K-colorability 

problem. Given an undirected graph G of n nodes and a set of n 

colors, each with an associated cost, f i nd a mi nimum cost coloring 

of the graph such that no nodes sharing an edge are the same color. 

There are n" possible colorings of the graph. Evaluating them 

sequentially produces a solution in time O(n"). I present a 

parallel algorithm of order n2
• 

Each level 1n the processor tree r epresents the consideration of 

another node . That is, level one shows possible colors for the 

first node, level two colors the second node based on the choices 

made for at level one, and so on. I will describe the generation of 

the potential colorings . 

Each processor, described in Figure 6, has an edge list called edge 

and a list of costs indexed by color number called colorcosts. 

There is an array called coloring that reflects the color choices 

for preceding nodes, and a boolean array called colors that 1s used 

to generate the possible colorings for this node. 

The algorithm, given 1n procedure color, begins by assuming that 

all colora yield valid colorings . The array coloring is used to 

eliminate those colors that have been used to color nodes that 

share an edge with this node. This reduced set of colors, all of 

' .I: OJ 
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Pfoceaa• ClASS ColorCoata 
BEGIN 

BOOlEAN ARRAY edfe[1•n,1•n),colora[t tn)a 
INTEGER ARRAY oolortng(tan],colorcoata[1•n]a 
INTEGER ooat1 

PROCEDURE cotcw(_.), INTEGER_., 
BEGIN INTEGER Ia 

tf ftCMie)n THEN 
BEGIN 

coat••O. 
FOR h•1 TO_.., DO ooat••coat+coiOf'Coat(coiOI'Ing[t]]a 

END 
ELSI 
BEGIN 

FOR h•t TO nocle•t DO If eclge(t,noclll) THEN 
ooiOf'a( coloring[ I] ]t•f ALSE 1 

fOR h•t TOn DO 
tf colora[l] THEN 
BEGIN 

aon(f).colortng[noclll]••l 
aon(t).cotOI'(node+t )I 

END 
ElSE aon(l)z·NONEt 

ooat••,...xcoatt 
fOR h•t TOn DO 

ENDt 

If (If aon(t) • NONE 
THEN FALSE ELSE coathon(l).coat) 

THEN ooats•aon(l).ooatt 

END •t ,no•..,. colort 

END of ota .. c.IOf'Coatt 

1"1gure 8. CoJor-co•t Problem 
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Symbol 

• 
G 

II 

Color 
Bl ue 
Green 
Red 

F1gure ?. Color-Coat Example: Graph and Color L1at 

1"1gure 8. CoJor-Co•t Exampler Solution Tree 

Cost 
2 

1 
0 
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wh1ch are legal colorings, is used to spawn descendents, one for 

each coloring or this node. 

When the tree 1s n levels deep all the legal colorings have been 

generated. The leaf nodes calculate a cost for the coloring they 

represent, and each parent node takes as its cost the least cost 

among 1ts children. Thus the minimum cost coloring is stored at the 

root . 

An example 1s 1n order . A sample graph and color set are given in 

Figure 7. Figure 8 shows the colorings and costs arrived at by the 

algor1th~. Each level of the tree represents a node of the tree. 

That is, 1f the root is level 0, the first node is colored 1n level 

1, and level 3 represents potential colorings for the third node. 

Besides representing a part of a coloring, each node also contains 

the M1n1mum cost coloring found among its descendent colorings. 

The MinimuM cost of coloring the sample graph is 1, and is achieved 

by coloring nodes (1,2,3) (red,green,red) . 

When the color cost problem is solved in 8 brute force manner on 8 

sequential machine, it takes exponential time. The tree machine can 

solve the probleM in O(n2
) time us i ng an exponential number of 

processors. So on either machine, this problem exhibits exponential 

growth . 

Transitive Closure. 

Given a directed graph G, the transitive closure of G, G• , can be 

generated. The arcs of G• are subject to the following condition : 

for every arc (v,w) in G• there is a path, (v,e 1 ),(e1'e2 ), • • • 

( em, w) , in G • 

The best sequential algorithm for generating the transitive closure 

of a graph 1s attr i buted to Warsha11[1,8]. The algorithm uses three 

FOR loops · that run through the incidence matrix adding Rrcs. After 
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k steps of the outer loop, there is a path from vertex i to vertex 

j through vertices in the set {1,2, ... ,k} if and only if B[i,j]=l . 

On a seQuential machine, this algorithm takes O(n3
) time. The code 

1s given in Figure 9. 

A direct mapping of Warshall's algorithm onto the tree machine 
3 . 

yields a rather boring n algorithm that merely spreads the three 

iterative steps among the processors in the tree . 

There is a much more fruitful path to take. By understanding what 

actually happens during the execution of the algorithm, an 

effective mapping of Warshall's algorithm onto the tree machine is 

discovered. 

There are two key points to be made about Warshall's algorithm. 

First, the algorithm is cascading. Newly created arcs can effect 

the creation of yet more arcs . Any realization of the algorithm 

must allow for this characteristic . It is not sufficient to 

consider only the arcs in the original graph. 

Also important is the comparison between arcs. In Figure 9 this 

comparison is stated as 

IF b[i,j] AND b(j,k] THEN b[i,k]:=TRUE; 

In English, this reads •if there is an arc from i to j, and an arc 

from J to k, then create an arc from 1 to k•. 

Suppose that instead of an incidence matrix, there is a list of 

arcs. This list will be used as input to the tree machine. The 

output is the list of arcs in the transitive closure. 

The tree has a root node, n descendents of the root that are 

instances or the class vertex, and n2 descendents of the vertex 

processors described by the class toVertex.- The vertex processors 

represent the n nodes in the graph. The toVertex processors are the 

n possible arcs from each node. Jim Rowson deserves special thanks 
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~or distilling my complicated structure into this very simple one. 

The arcs in the original graph are used only as the starting place 

and are indistinguishable from generated arcs. As new arcs are 

created, they are considered by all th.e vertex processors just as 

the original arcs are. 

Area are created using a variant of the Warshall comparison. An arc 

has a starting point, fromV. and an ending point, toV . Each arc is 

considered by all the vertex processors. Each vertex will create an 

arc by turning on its appropriate descendent if one o~ two 

conditions · is true. Either this vertex must be the starting point 

of the arc. or there must be an existing arc from this vertex to 

the starting point . 

The first condition takes care of the arcs in the original graph. 

The tree starts out with no arcs. As the original arcs are loaded 

into the tree, the ~irst condition is true and arcs are created. 

The second condition 1s the Warshall comparison. Suppose the arc 

(v,w) is being considered by vertex u . If arc (u,v) exists then arc 

(u,w) is created. This is how new arcs are created. 

As each arc is created, by 

broadcast throughout the tree; 

other arcs. 

satisfying either criterion, it is 

it might effect the creation of 

The code for this algorithm is given in Figures 10 and 11. Figure 

10 shows the properties common to all three kinds of processor 

nodes, •nd defines some auxiliary classes used for queueing and 

passing date between processors. Figure 11 is the definition of the 

three processors, including the procedures that implement the 

revised Warshall algorithm . 

The key routines are load and unload . Procedure load appears in the 

root and vertex processors and is used to pass arcs through the 

systeN. Unload is in the root. Each call on unload yields an arc in 
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BOO\.EAN AftRAV B(1tn,1tn]a 

INTEGER I,J,II.a 

FOR kt•1 ton DO 

fOR h•1 ton DO 

feft ja•1 ton DO 

If l(t,k) AND 8(11.,1) THEN B(I,I]1•TRUEa 

#'tgure 9. War•ball'• Algorithm (Sequential Macbtne) 

CLASS .-ooea .... , 
BEGIN 

REF(proceaaor) MY•Y aoft(1m]a 
Mf(.-ooeaaer) ,.,_,, 

END ot elaaa IINOOHOfl 

twoc••- CLASS Gtwoco•-• 
BEGIN 

REf(hoad)Qa 

PROCEDURE IMertlnQ(qe)l Rff(.,ouoEietMnt)qe1 qe.lnto(Q)a 

REF(..-uoE'-"t) PROCEDURE flratlnQ, 
BEGIN Rff(t~uoueEIOfMftt)tiea 

flratlnQa•qe••Q, flr1t1 
qe.out, 

END of ,.._ •• ..,. flratlnQI 

END of olaaa O,..OOOhOfa 

tlnll. CLASS .-uoE'-"t(~)l Rff(Qproooaaor)lftY()wnofl 
BEGIN 
END of olaaa .,.uoEe....ta 

CLASS odge(froMV,toV)I INTECRR tr-V,toV1 
BEGIN 
ENDofola ........ 

#'tgure J 0. General Proc•••or De~1n1t1on and Auxtlary Cla•••• 
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QprooeaMf CLASS roota 
BEGIN · 

PROCEDURE loed(o)a REF(Mie,_. 
BEGIN INTEGER Ia 

FOR h•t STE!It 1 UNTil" DO aon{t).loH(o)a 
ENDof .......... loMa 

REF( ..... ) PROCEDURE Uftfoetl1 
BEGIN 

IF Q ..... ty THEN tlftfoNa·NONE 
ELsE BEGIN REF(..-.E'-'t)qea REf(ectge)e1 

tte•·fttatlnGa 
unfoM!•e.•tte • ...,own..nextE.I 
loed(o)t 

ENDa 
ENDofiii'ODd----. 

BEGIN Int..- Ia 
FOR h•t STEP 1 UNTIL" DO aon{l)r•now -'ox(t)a 

END of lnlt o.-, 
END of olaaa roota 

QproceaMf CLASS vertox(MyNoiJo)a INTEGER MyNoclot 
BEGIN 

REF( ....,_EioMoftt,., 
BOOlEAN .,ou.da 

REF( .. ) PROC£DURE nextE., 
BEGIN AEF(ttuo_E...._.t~ta 

ttt:• ftfatlnQ; 
neatEdgor·NEW odgo(MyNoclo.t~t.My()wner.~~tyNocloa 
IF NOT Q ..... ty THEN ,_..,t.ln-'tnG(IIO) 
ELSE tiUOuod:"'FALSEa 

END of prooodwe neat£.1 

PROCEDURE loed(o)1 R£f(odgo,_. 
BEGIN 

IF o . fromVo:MyNoiJo OR .-(o.tr-v).M~oo•lt• 
THEN BEGIN 

aon[ •· toV).IMfUtlloa 
tFNOTIIUOu.d 
THEN BEGIN 

...... t .ln-'lnG(tte)l 

..-..... •TRUEa 
ENDa 

END1 
END of pr....,. toMa 

..-uotlr•faiMt 
410: -NEW 'IUOVOEioMent(THts wrtox)t 

BEGIN INTEGER It 
FOR 11•1 STEP 1 UNTIL" DO Hft(t)a•now toVertoa(l)a 

END of lftlt coclo1 
END of claaa verto•t 

Sally A. Browning 

l'lgure ll . lfevl•ed War•halllmplementat1on (Contlnued on next page) 
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Q,_a.- ClASS toVertoa(MYNoct.)t INTEGER ~ttyNoct.t 
BEGIN 

REF(quouoEe-t)qe, 
BOOLEAN edgeEal•t•t 

PROCEDURE ~Edfel 
BEGIN 

If NOT edgllfAiata 
THEN BEGIN 

edgiiEalataa•TRUEt 
p~.m-tlnQ(qe), 

ENDt 
END of pr-•lt- ..tlE .... t 

odgeEal•taa•fAlllft 
qoa•N£W quouo£'--'t(THIS toVertoa)t 

ENDofotaaa-... 

r1gure! !. Rev1aed Warallall Algorithm lmplement.t1on 

r~&are ! B. Arrangement. o' a 111 the Tree and R1ngmacll1ne 
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the transitive closure. 

Each arc in the origtnal graph is aiven to the rool via a call on 

procedure lnad. The arc is passed to all vertex processors. There, 

on the second level, each vertex executes the test described above 

to see if the arc causes the creation of an arc from this vertex. 

Once all the arcs of the original grapn have been loaded, the arcs 

of the transitive closure are available for unloading. As an arc is 

handed to the outside world by a call on the root's unload 

procedure, it is passed back down the tree to the vertex 

processors, just as the original arcs were, by a call on procedure 

load. 

A double system of queues is used to indicate the availability of 

arcs for the unloading and broadcasting ooerations. The queue in 

the root is used by the vertex processors to indicate willingness 

to provide an arc to the root. When an arc is unloaded, it is also 

broadcast through the tree via the load routine. The aueue in the 

vertex processors is used by the toVertex processors to indicate 

that another arc has oeen created. 

The queues are used to avoid polling the vertexs and toVertexs fro~ 

available arcs. The polling introduces two iterat1on statements 

which are executed for each arc 1n the transitive closure . They 

cloud the issue by appearing to affect the complexity. The queues, 

on the other hand, simulate the hardware nicely. The two upper 

levels of the tree need to respond to a signal fro~ any one of 

their c~11dren. The queues provide this effect. 

The algorith~ as described above and in Figure 11 has time 

complexity of the order of the number of arcs in the ~ransitive 

closure. The maximum number of arcs in a direct~d graph of size n, 
a 2 is n ; the transitive closure is itself such a graph, is n . Thus 

the time complex1ty of this algorithm is O(n2
), li~ited by the ti~e 

1t takes to read out the arcs of the closure. 
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As described, z Zn -1 processors are used to generate the closure. A 

solution using only n+l processors, yet essentially the same, can 

be devised. Suppose each vertex processor, now the leaves of the 

tree, contains a boolean array instead of using toVertex processors 

to represent existing arcs. The vertex processors have more local 

store. and a parameter of the problem, the size of the graph, has 

been introduced into the physical requirements for each processor. 

This is something I want to avoid. It is, however, a perfectly 

valid implementation, and indeed, retains the O(n3
) total 

complexity. 

Is the Tree Machine Magic? 

lt is time to address the question of whether these problems need 

tne tree machine structure . The answer is simple. No. I will give 

an alternative architecture that vields an equivalent solution. 

Mike Ullner has oroposed the Ringmachine (7], a •tree of branching 

ratio one•. The structure is a doubly-linked ring of processors, or 

more simply, a linear pipeline. 

This structure is also capable of doing transitive closure in O(n2
) 

2 time using O(n ) processors, and the code is as simple as that for 

the tree machine implementation. The Ringmachine algorithm is given 

in detail in [3]. 

The key to the O(n2
) solution is the 

communication path. In fact, sorting and matrix 

pipeline, not 

mu 1 tip li cation 

the 

are 

also problems in this class . The size of the answer determines the 

size of the problem. Any pipelined structure that can spew out 

answers one at a t1me in a continuous stream is adequate. 

So what is the tree machine better at? The difference between the 

tree and the ring is that any particular node in the tree can be 

total number of processors . Problems that have one answer that can 

be in any of a larQe number of processors can take advantage of the 
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tree structure. NP-complete problems, like the color cost problem 

treated aarl1er, are a graphic example of this. Those problems 

require an exponential number of processors, however, and thus are 

not practical. 

An Algorithm that Uses the Tree Effectively. 

J have found a problem that does make use of the extra 

com.unication paths in the tree. It is taken fro~ numerical 

analysis, and is presented here out of context. The proble~ 1s to 

generate a vector x from a vector a according to the following 

rule: 

In other words, the ith element of the vector x 1s the su~ of the 

first i ele•ents of the vector a. This proble~ is solvable on a 

aequant1a1 .. china in O(n) ti•e . 

If the tree ••chine and Ringmachine are treated as peripheral 

functional units that are given a and produce x, the performance of 

the two Machine is identical. loading and unloading the vectors 

again dominates the t1me complexity . In each case, n processors are 

used to solve the problem in O(n) time. 

A mora interesting formulation of the problem assumes that the tree 

and R1ngmachine are already loaded with some convenient arrangement 

of a. How fast can x be generated, with x ending up in the same 

arrangement as a? 

Given the arrangements shown in Figure 12, the Ringmachine uses n 

processors to generate x in place in O(n) steps. The tree machine, 

on the other hand, uses n processors, but arrives at the answer in 

0(1og2n) steps. For large n, this is a significant difference. 
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compu~a~1ons o n a Tree or Processors 

CLASS aum(a,maJt)l INTEGER a,ma~; 
BEGIN END1 

PYec••- ClAU -torSUWII 
8EOIN 

INTEGER aubacrtpt1 
INTEUR 11t1 

AEF(aam) P'AOCEOURE 8U""'ftl 
BEGIN 

It' f..rt••NONE AND ,._,.••NONE 
Ttftflf _u,a•NEW auM(~~t,aubacript) 
ELM BEGIN MF(avm)l,r1 

h•lf .. tt••NON£ THEN NEW .. lm(x,aubacrlpt) ELS£ left.aumpuPf 
ra•lf rtght••NOffE THEN NEW IUWI(x,aubaorlpt) ELSE rlght.aumpup, 

···••1 .• , 
IVMUpa-NEW IUM(lll+r.a,r.IMX)I 
fett .au.clown(l)l 
rllht.aumdown(NEW aum(~~t,aub.crtpt))l 

ENDt 
END of~-~~~ 

PROCEDURE autiMiown(p)l AEF(aUM)PI 
BEOtN 

If p ..... x(aubaorlpt THEN lllt•~~t+p.al 
If left•/•NONE THEN lett.autndown(p); 
If rlght•/•NONE THEN rlght.autndown(NEW IUM(~~t,aublcrlpt)l 

END of prooedure autndownr 
END of eNN vectorSUWit 

I"~ 'J a. Algor1tlun ~or ~1nd1ng x,. 

Sequential 
Machine Tree Machine 

apace tiae processors tiae 

Heap Sort n nlog2 n n D 

Matrix 2 3 2 2 
Mult.iplicat.ion n -n D D 

n n 2 
Color Coat D n D D 

Transitive 2 3 a a 
Closure D D D D 

XI D n D log2 n 

r1gure f4. BttqUent1al and Tree Macla1ne Pedormano•. 
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The Ringmachine algorithm is straightforward. Starting with the 

vector a distributed as in Figure 12, each processor adds numbers 

that are passed in from the left to the ai it holds before passing 

them on. After the ith processor has seen i-1 numbers, 1t sends a1 

to the right and becomes dormant . The nth processor waits n-1 time 

steps for a1. The other n-2 elements arrive in the next n-2 time 

steps, and are added to an to form xn. Thus the process 1s complete 

after Zn~t cycles. 

The algorithm on the tree machine is not as simple. The arrangemen~ 

of the a1's given in Figure lZ is not intuitive. And the algorithm 

requires data to flow up and down the tree simultaneously. The 

SIMULA code is given in Figure 13 . 

The summing starts in the lower left hand corner of the tree. Each 

node gets partial sums from its left and right children . The left 

hand sum is added to the a1 in the processors, stored as x 1, and 

passed to the right child . Then the sum from the right child is 

added in, and this result, the sum of all three numbers available, 

1s sent to to the parent processor. It takes log2 n cycles for t~e 

root to receive the sum of the a1•s in the 1Aft half of the tree, 

and another log2 n steps for that sum to filtAr down to the lower 

right corner, forming x". 

The algorithm described above uses the extra communication paths of 

tne tree to advantage. It remains to be seen if the problem can be 

put back into the numerical analysis context from which it came, 

and st111 perforM better on the tree than on the Ringmachine. 

Conclustons. 

The work described in this paper 

questions. First, are multiprocessor 

what kind of system should be built? 

is aimed at 

systems useful? 

deciding 

And if 

two 

so, 

The answer to the first question is a resounding yes . Figure 14 
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compares the performance of the algorithms described here on 

sequential machines and the tree machine . In each case, the time 

complexity 1s substantially reduced . 

The second question does not yet have a clear answer. I am just 

beginning to examine problems that can use the three-neighborness 

of the tree to advantage. Unless the additional complexity of 

building a tree rather than a Ringmachine can be justified, the 

simpler structure is heavily favored . I am hopeful, however, that 

numer1cal analysis problems will demonstrate the value of the tree 

•ach1ne. 
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