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Abstract 

441 

We propose two new models of computation for VLSI which take into consideration the physical nature of 

information, the properties of wires. and the geometrical structure of the circuit. !3oth arc refinements of the 

Kung-Thompson model, and make the main additional assumption that the propagation time of information 

is at best linear in the distance. lne first is the more general and appl ies for any plannr technology. It is in a 

sense the minimal physical model. The second. more restrictive, is specially tailored for electrical 

technologies. Our approach is motivated by the failure of previous models to allow for realistic asymptotic 

analysis. For each model, we arc able to show new lower bounds and trade-offs for many well-known 

problems. 
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1. Introduction 
The importance of having general models of computation for VLSI is apparent for various reasons. Among 

the chief ones, we must include the need for evaluating and comparing circuit performances, showing lower 

bounds and rradc-offs on area, time, and energy, and more generally building a complexity theory of VLSl 

computation. 

While these models must be simple. general enough, to allow for mathematical analysis, they must also 

reflect reality independently of the si1e of the circuit. We justify the latter claim by observing that if 1980's 

circuits arc still relatively small, the usc of high-level languages for designing chips, combined with the 

possibility of larger integration and bigger chips, will make asymptotic analysis necessary in the ncar future. 

Yet as circuits are pushed to their physical limits, constraints which could be ignored before become major 

problems and must be accounted in the models. ln particular, certain physical phenomena specific to 

electrical technologies enforce the density of current at any point of a conductor to be bounded. We can show 

that this invalidates the assumptions made in previous models, whereby long wires can be driven in constant 

time and an f-branch fanout takes O(log f) time [MC80, fH79]. 

Generally speaking, one major flaw in those previous models is to regard a circuit as a topological 

interconnection of nodes where transmission delays between adjacent nodes can be ignored. Instead, we 

propose to take into account the geometry of the circuit by assuming a propagation delay linear in the 

distance. We can justify this approach by considering parameters such as length and width of wires, and 

associating resistance and capacitance with each pan of the circuit. We will define a first model which docs 

not make further assumptions, and we will review the complexity of some well-known circuits in this model. 

Ho'Wcvcr, observing that in NMOS technology, the power can be supplied only from the outside boundary of 

the circuit, we can include this requirement and define a second model, which may be more realistic for 

elecrrical planar technologies. 

Also, besides presenting new models of computation for VLSI, the purpose of this paper is to present a 

general technique for deriving lower bounds and space-time trade-offs for many problems, e.g., addition and 

transiti vc functions. 

2. The Models 

2.1. The basic assumptions 

Our models arc for the most part refined versions of the current planar models found in the literature 

[fll79, BK80. VU80}. A circuit consists of nodes and wires connected in a network, and it is defined by a 

geometrical layout of this network. We distinguish 110 nodes where input and output values arc available, 

the logical nodes (gates) which compute boolean functions. and the connection nodes which simply connect 
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wires. The circuit is laid out witl1in a convex region wim all the 1/0 nodes lying on its boundary. It is me case 

today, and will remain true because of the greater case in conncning and packaging such chips. Jn addition, 

we make the following set of assumptions. which define our first model (MOD!). 

1. Wires have width and spacing between them greater man X (today X:::::lJ.Lm). This requirement 
will always be valid for any physical device. 

2. A circuit is laid out on a finite number of layers, and wires crossing through different layers are 
allowed. ' l11us there is at most a consta.fll number of cross-overs at any poinL 

3. The density of current at any point of a wire is bounded by a maximum value 8 • which is 
equivalent to saying that the power dissipated per unit volume is abo boundc!.~nc major 
consequence of this assumption is to make propagation delays at least linear in the distance. 

4. To switch a gate requires a minimum energy dissipated as heat [MC80.Ch.9]; U1is energy must be 
supplied to me gate by a source omcr man the input signals. 

To take into account the limitations in driving power enforced by NMOS and to a lesser extent CMOS 

technology, we introduce a second model (MOD2). which in addition to MODi, includes the following 

assumptions. 

1. All me energy supplied to the circuit comes from ouiSidc t.hc circui t. and its transmission is 
performed only through wires. From 3, it follows that the maximum power provided to the circuit 
is at most proportional to the perimeter of tile circuit. 

2. Storing a bit of information requires a minimum energy per unit of time. 

Note that since this model is more restrictive than the previous one, all the lower bounds obtained for MODI 

arc still valid in MOD2. 

2.2. Coding information 

The information at a point is given by the value of an electrical parameter at this point, which we define as 

tile potential of a capacitor. While clectrical computations arc essentially analog processes. the coding of 

information is made digital by assuming a 0 for a potential less than V 
0 

and a I for a potential greater than 

v1 (V1>Vo). 

2.3. Wires 

A wire is a rectangular parallelepiped made of conducting material. oriented by tile direction of the current 

It is charncterit.ed by its length L, its width W. its thickness H. and its distance D from a plane of reference 

(the substrate). Its resistance R and its capacitance C arc given by the (idealized) relations 

R = pxU(WxH) C =£XLXW/O 

where p and£ arc technology-dependent coefficients. 

Minimum values for L, W and H arc set by tllc technology (as weJI as by me Jaws of physics), and we 
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requireD to be consmnt for any wire. Moreover it is legitimate always to assume bounded thickness. Indeed 

a current density 8 causes a heat power Joss in the wire proportional to LxWxHx8l., but the dissipated 

power is proportional to LxW. since the circuit is planar. For allowing this heat tO be dissipated, the thickness 

H must remain within constant bounds. Thus we can assume that the resistance is simply proportional to 

UW and the capacitance to LxW. 

2.4. Nodes 

We distinguish three kinds of nodes, each of which uses up a minimum constant area. 

• Connection nodes: Their purpose is to provide electrical contacts between a bounded number of 
wires. These contacts may either connect wires on a same layer, or they may be "vertical contacts" 
between different layers. Of course, they introduce no delay and do not dissipate any energy. 

• 1/0 ports: ' llley ensure the exchange of information between the circuit and the outside world. 
The location!'. and the order in which input (resp. output) bits arc to be written (resp. read} are 
fixed and independent of the values of these bits. We restrict each input bit to be available on the 
input port only once. This implies that the repeated usc of the same input bit necessitates its 
storage within the circuit. The transmission of an mformation signal through an 1/0 port 
introduces a constant delay. 

• Gates: Conceptually, a gate is the device used to compute a logical function of one or two inputs 
and one output. Since it can be shown that there is no imerest 10 having gates of arbitrary size, we 
assume that all gates have the same site. Physically we must associate a gate capacitance with each 
input. An input is valid as soon as the corresponding gate capacitor has been set above or below a 
certain threshold potential. lhc value of the function is given by the potential of the output 
device of the gate. Once the output is available, tt cannot be destroyed before a constant lapse of 
time, whatever the input changes occurred in the meantime. 

2.5. Current density 

Proposition 1: The density of current is bounded at any point of a conductor by a maximum 
value 8maJt' 

One major flaw in previous models is to suppose that a wire of constant width can drive a current of 

arbitrary intensity. We can list at least three reasons in present-day technologies which justify Proposition 1. 

1. Any conductor with non-zero resistance produces a power per unit volume proportional to the 
square of the current density. Since thts power can be dtssipatcd only through the boundary of the 
conductor, the heat dissipation is at most proportional tO the area of the conductor, which implies 
a bounded density. 

2. An electrical phenomenon called metal migration [MC80, CL80] causes a current to destroy the 
conductor all the more quickly as the density is high. For this reason, a maximum admissible 
density of current can be assigned to any conducting material. 

3. The voltage drop per unit length is proportional to the density of the current. Since we must 
ensure that the logical value of the signal provided by power wires is the same at any point of the 
circuit. this voltage drop must remain small, and thus the density must be bounded. 

For example. the aluminium currently used in NMOS technology has a maximum density imposed. by metal 
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migration of about 109 A/m2 or only I rnA/ p.m2. For this density the voltage drop is 30 V /m with a resistivity 

of about 3.10-8 nxm. Note that the voltage drop on a 3 mrn wire is 0.1 V, and is far from negligible. Also, the 

power induced in the wire by such a density of current is about 3 W /cm2, if the thickness is lp.m. 

3. Transmitting Information 
We turn to the problem of transmitting an infonnation bit from a point A to a point l3 at a (Euclidian) 

distance L apart. We will assume that this information will be carried through an arbitrary path from A to B 

consisting of nodes and wires. 

We first consider the case where the path consists of a wire followed by a gate. LetS= HxW be the section 

of the wire. In order to transmit a bit of information, we must raise the wire to the required voltage. The 

charge Q on the wire is therefore proportional to its capacitance, that is, LxW. Since in a timeT a density of 

current crossing a section Scan provide at most a charge cSmax xSxT, the assumption that H is bounded yields 

the relation T= fl(L). 

We next investigate tJ1e case where two paths of tJ1e previous type are cascaded. Since the first gate cannot 

be switched before the signal becomes available on me first wire, the total delay will amount to me added 

delays of me two paths augmented by the switching time of the first gate. TI1is also results in an fl(L) delay. 

The last case to examine involves two wires linked by a connection node. We can apply the reasoning used in 

the case of a single wire, with W now being the maximum of the two wire widths. The same result follows 

directly. In the general case, we can decompose an arbitrary path from A to B into components of the form 

previously examined. Putting the above results together permits us to find the claimed lower bound on the 

time. 

In addition, we should notice that some energy is dissipated along me wire during the propagation of 

infonnation since the wire has a non-zero resistance. This energy is proportional to the charge involved, 

which is fl(L) in any configuration. Observe that mis energy is independent of the timeT. 

BotJ1 results pennit us to state the following. 

Theorem 2: Transmitting a signal between two points at a distance L apart requires fl(L) time 
and fl(L) energx. 

Note mat this lower bound cannot be achieved with a simple wire: because of ilie diffusion law 

fMC80.SE79], the actual delay is in fact proportional to RxC = L2. However, we can reduce this delay to 

O{L) by using O(L) wires of constant lcngili connected by O(L) gates (e.g., inverters or amplifiers). If the 

wires have minimum width, tl1c lower bound O(L) on the energy is also achieved. Note tl1at a simple speed

of-light argument yields the same result for any technology. This is precisely what makes MODI a minimal 

planar model for all physical computations. 
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4. Distributing and Collecting Information 
Throughout this section, we will assume lhat lhe model is MODI or MOD2, indifferently. To fan-in or 

fan-out information being two of the most common operations performed by circuit<;, we next turn to these 

problems, from which we can best measure lhe significant departure of our models from previous ones. For 

simplicity, we first prove a technical lemma. 

Lemma 3: There is a constant c (c = 1 /27T) such that for any convex polygon with a boundary of 
length N and for any point M , there e~ists a vertex v such that dist(v,M)?;cN. 

We omit the proof, which is straightforward. 

4.1. Fan-out 

A fan-out of degree N refers to the distribution of an information bit from a source toN points (gates or 

ports) on the circuit. To stud} lhe complexity of this problem, we distinguish two cases: when the N points lie 

on a convex boundary (e.g., on the boundary of the circui t). and when their location is left arbitrary. We 

define T (resp. E) tO be the minimum time (resp. energy) to perform a fanout ofN points. It is trivial to see 

that E= Q(N)in both cases, since to reach every node, lhe information must cross a wire of (at least) unit 

length. As for the timeT, we have two different results. 

Theorem 4: lfthe N points lie on a convex boundary, T= Q(N). 

Proof: It follows from Lemma 3 lhat one of rJ1e N destinations is at least eN apart from the 
source, and Theorem 2 permits us to conclude. 0 

Theorem 5: If the N points have arbitrary locations, T = Q(N 112
). 

Proof: 1\ consequence of the fact that the maximum distance between N points and an arbitrary 
point in rJ1e plane is at least cN112. for some constant c. 0 

Note lhat all these lower bounds are tight, as shown in Figure 4-1. 

On the boundary Without constraints 

Figure 4- I: Optimal fan-out 
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4.2. Fan-in 

The fan-in is essentially the reverse operation of the fan-out, since N in formation bits must converge from 

N sources to one destination point Yet it is a little more general, since tJ1e information may be submitted to 

logical operations on its way to the destination. Typically, the problem is to compute a boolean function ofN 

inputs and one output Since every gate is followed by a wire of unit length at least, the minimum energy 

dissipated during the operation is E= Sl(N). If the N inputs are valid at the same time, the results arc the 

same as for the fan-out. In the more general case where pipelining is allowed and the inputs arc valid at 

arbitrary times, we can show the following. 

Theorem 6: If T (resp. A) denotes the minimum time (rcsp. area) for computing a boolean 
function ofN mputs, we have T= Sl(N112) and AT= Sl(N). 

Proof: Let p denote the total number of input ports actually used. rt takes time at least 
proportional to N/p to read all the inputs. and since the p ports lie on a convex boundary, 
Lemma 3 and Theorem 2 show that T = Sl(p). Observing that A= Sl(p). tJ1e result is then 
immediate. 0 

Note lhat tJ1ese lower bounds arc still valid for boolean functions witJ1 an arbitrary number of outputs, as long 

as at least one output depends on all the input values. 111e addition for example falls in that category, since 

the last carry depends upon all lhe operand bits. If the boolean function is a commutative, associative, 

operation on N variables, these lower bounds arc tight. as shown in figure 4-2. 

r--------~ 

Lt-t= f t 1-t-

a 
N· VN +1 

Figure 4-2: Com(Juting Y = a1 op a2 ... op aN 
takes Sl(N112) time and area. 

5. New Lower Bounds for some Common Problems 

5.1. Addition 

> v 

Since our models relate the time of computation to the geometry rather than the topology of the circuit, we 

can show that many complete binary tree based schemes cease to have lhe logarithmic time complexity which 

they enjoy in previous models. Notable examples include the fan-in and fnn-out operations studied earlier, or 

the addition of two N-bit integers, to which we next turn our attention. We study tJ1is problem in our twp 
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models in turn. For simplicity, we stan the analysis with the model MOD2, and present the basic arguments. 

5.1.1. Case MOD2 

Theorem 7: JfT is the time required in MOD2 by any circuit to add two N-bit integers, and if A 
is t:he area of the circuit, we have 

1) AT= S1(N) 

Proof: For tJ1e sake of simplicity, we will assume in this proof mat me sign "=" really means 
"equals to wimin a constant factor". Relation 1) follows directly from the fact t11at adding two N
bit integers involves a fan-in of degree N. To prove 2), let's call X one of the operands andY me 
result of the addition. Since we can always assume that low order bits arc read first, we can rewrite 
X as X ... X2X1• where X arc the bitS of X read at timet.. wim t1<...<t <T. X denoting both me 
chain o~ bitS and itS length, we have the relations 

1 
P 

1 

0) X1 + ... + xp = N (2) T;?;p. 

Let X(t) be the total number of bits of X read so far at time t, and let Y(t) be me total number of 
result bits output in mis interval of time. Since at time t, the total number of possible values for 
the remaining output bits is atleast2l'<·Y<t), and only N-X(l) bits of X remain to be read, me circuit 
must have at least X(t)-Y(t) active gates at time t. This requires a circuit perimeter n ;?;X(t)-Y(t) 
and a time n . hence t:he relations 

(3) X(t)-Y(t)::;n (4) T;?;n. 

Since low-order input bits arc read first and a fan-in on k bitS takes S1(k) time. at least N-X(t) 
output bits remain to be computed at time t. + \· We can give a geometric interpretation of mls 
relation as shown in Figure 5-l. Relation (3) implies that the endpointS of the intersection of me 
shaded area of Fig.S-1 with a vertical line arc at most n apart. lt follows mat the shaded area must 
lie within the strip (Ll'L2), which in turn implies 

x1
2+ ... + xP 2::;Tn 

Since X/+ ... +X 2 is minimal when all t:he Xi's arc equal, we derive t:he relation N 2/p5Tn, 
which combined Jim relations (2) and (4) yields 

T;?;N2/p0 +p+ n 
The minimum of me right-hand side is achieved for p = n = N 213, which concludes t:he proof. 0 

Note t:hat me lower bound on AT is trivially tight, since there exist linear-time constant-area adders. We do 

not believe that this is the case with the lower bound given forT. We conjecture matT= S1(N) is the actual 

lower bound in this model, which would make the simplest adder in me world asymptotically optimal. 

5.1.2. Case MODl 

Jt is natural that low~r bounds obtained in MODI should be weaker than in MOD2. However, MODl has 

the merit of greater generality, and any lower bound in this model is thus very interesting. 

Theorem 8: lfT is the time required in MODl by any circuit to add two N-bir integers, and if A 
is the area of the circuit, we have 

T=S1(N112). AT=S'2(N), AT2=S1(N2
). 

P roof: ll1e first two relations result from the fact that adding two N-bit integers involves a fan
in of degree N. lndced the last carry is a fan-in of all me input bits. We can prove me last relation 
wim the same technique used above. Keeping the same notation, we find mat X(t)-Y(t)::s;A. since 
at any time t me number of bits stored in the circuit is at least X(t)-Y(t). On me omer hand, Y(t) 
always lies below the shaded area of Fig.S-1. It men follows mat total area Of me shaded rcgiqn 
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N 

t 
T 

Figure 5-l: The Q(N 213) time lower bound on integer addition. 

cannot exceed the area of the parallel strip (L1,L2}, hence 
2 2 X1 + ... +XP ~AT. 

The minimum is achieved for X. = N/p, and since the time for reading the data is proportional to 
p, we find AT2 = n(N2), which cbmpletes the proof. 0 

S.L3. Optimal adders in model MODl 

A fortunate feature of addition in model MODl is to allow the possibility ofmatching all the lower bou nds 

derived above. We will describe a class of adders which satisfy these properties. 

Serial Adder: The simplest adder requires constam area. operates in linear time. and thus matches the lower 

bound for the measures AT and AT2. ·n,e scheme of this adder is represented in Fig.5-2. 

CLA Adder: Assuming wlog that N is a power of two, we impleme nt the CLA scheme on a complete binary 

tree with N leaves. The operand bits arc read in parallel at the leaves, and the time of computation is at least 

the time for propagating a signal across the longest path in the tree. It follows tha t the layout of F ig.5-3 

requires O(N) time and O(N logN) area. 
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+ 
Figure 5·2: The Serial Adder. 

Figure 5·3: TheCLA Adder. 

If the technology allows the packing of k infonnation bits on a square of area O(k) (e.g. that excludes 

NMOS). an alternate layout may usc the H·embedding of a binary tree. as shown in Fig.5·4. The operands 

may be driven from the input ports to the leaves of the tree in about N112 waves of2N112 bits. Unfortunately, 

each wave consists of a complicated (but fLxed) sequence of input bits. If we do not account for the task which 

arranges the input bits in the proper order, and if we use inverters to avoid long wires (sec Section 3) adding 

two N·bit integers simply takes O(N 112) time and linear area, which matches the lower bounds obtained forT 

and Ar2. 

Mixed CLA Adder: In some applications the size of the operands greatly exceeds that of the circuiL. and 

only, say, Na input ports are available. In this case, we can divide the operands into roughly N1·2a groups of 

N2a bits, and compute the addition for each group with a CLA adder of area N2a. transmitting the carry for 

the next addition every time around. The total time of computation will thus be O(N1-a). with a circuit of 

area O(N2a). Note that the lower bound AT2 = N2 is still matched with this scheme. Also, we observe that for 

a= l/2 we have the CLA adder. whereas setting a to zero reduces to the serial adder. 
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Inputs 

and 

Outputs 

Figure 5·4: Optimal layout ofthe CLA adder. 

5.2. Transitive Functions 

In a recent paper [VU80]. J. Vuillcmin has shown that the transitivity of a function has heavy consequences 

on its complexity in a YLSl model. Roughly speaking, a function is said to be transitive of degree N if it 

computes a transitive group of permutations acting on N clements. This implies that the function can map 

any input bit onto any output bit for an appropriate value of the other inputs. Such functions include cyclic 

shifts, integer products, convolutions. linear transforms, and some matrix products. 

5.2.1. Case MODI 

Even in our more general model. we can show a significant difference with previous results (PY79, YU80]. 

'Theorem 9: Computing a transitive function of degree N takes timeT= Q(Nv2
) . 

Proof: Let p be the number of output ports actually used. Since an input bit can be mapped 
onto any output port, Lemma 10 shows that for some value of the inputs, the computation will 
take time at least proportional lO p. On the otJ1er hand. observing that it takes time at least 
proportional tO N/p to output the result completes the proof. 0 

It is worthwhile to notice the serious gap existing between this model and the previous ones. which allowed 

for logarithmic time for computing transitive functions (e.g. the CCC·scheme (PV79D. 

5.2.2. Case M002 

It comes as no surprise that since our second model adds physical constraints to the one in which Vuillemin 

derived his lower bounds, we can significantly improve upon his results. Before proceeding, we will establish a 

preliminary result 

Lemma 10: If N gates in a circuit are switched at the same time, meir convex hull has a 
perimeter O(N). 
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Proof: Since all the power comes from outside the circuit and is transmitted through wires, the 
power inside any convex region of the circuit is at most p~oportional to its perimeter. Switching a 
gate requiring a minimum energy, t.he result is straightforward. 0 ,. 

We can now prove our main result. 

Theorem 11: Any circuit of area 1\ which computes a transi tive function of degree N in timeT 
satisfies 1\ = Q(N). T = Q(N). 

Proof: It hns been shown in [V U80] that the circuit must have the capability of memorizing N 
bits. Therefore Lemma 10 implies tJ:at the c ircuit must have two act1ve gates G 1 and G 2 at a 
distance Q(N) apart, hence 1\ = Q(N). We can always assume that for some values of the inputs, 
informauon will be transmitted from G

1 
to an output port P

1 
(same with G

2 
and an output port 

P 2). Consider now an arbitrary input port R. Since the function is transitive. there exists a path in 
the circuit from R toP 

1 
and from R lO P 

2
. Among all possible computations. the four paths G 

1
-

p 
1
• G

2 
·P 

2
• R ·P 

1
• and R-P will be used at least once. hom ·rneorem 2. it then follows that Tis at 

least proportional m Max{G
1
P

1
.G

2
P

2
.RP

1
,RP

2
}. The sum of these four lengths is greater than 

G
1
G

2
=Q(N) ·Sec Fig.S-5·, which concludes the proof. 0 

G1 

Figure 5·5: Computing a transitive function requires linear time. 

Remark: ln MOD2. these lower bounds arc tight tor some problems; for example optimal circuits for 

performing integer multiplication. based on the Shift&Add scheme, can be found. 
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6. Conclusions 
The major contribution of this paper has been to show how previous models fail to al low for asymptotic 

analysis. We have proposed two models of computation which arc more realistic yet fairly simple. Since our 

models arc essentially geared towards asymptotic analysis, previous models may tum out to be more accurate 

for circuits of small size. For example, the carry-look-ahead scheme for adding two N-bit integers actually 

requires at least Q(N112) time in our models instead of the well-known logarithmic time, but it may still be 

superior to any naive circuit for small integers. 

Further refinements of these models should be valid independently of size considerations, and should allow 

for a Ia Knuth analyses of YLSI circuits. It is still difficult to think of a tcchnology-indcpendem model at the 

present time. But it may be a prerequisite for building a complexity theory which faithfully reOects reality. 
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