
285

FUNCTIONAL VERIFICATION IN AN INTERACTIVE SYMBOLIC
IC DESIGN ENVIRONMENT

Bryan Ackland
Neil Weste

Bell Laboratories
Holmdel, New Jersey 07733

ABSTRACT

This paper describes verification techniques that have been implemented as part of
an interactive symbolic IC des ign system. Circuit analysis programs perform node
extraction and gate decomposition. They generate both transistor and gate level
circuit desriptions which are used as input to a transistor level digital MOS timing
s imulator. The extraction programs make use of an intermediate circuit descrip­
tion language which captures both geometric placement and circuit connectivity.
All programs are written in the C programming language and run under the UNIX
operating system. An example is included to demonstrate the operation of these
various techniques.

l. INTRODUCTION

Functional verification is an important and necessary step in the design of large scale
integrated circuits. It is that part of the design cycle which eliminates most, preferably all, of
the human errors introduced in the forward part of the design. It is generally a two stage pro­
cess consisting firstly of automatic circuit extraction, in which electrical circuit descriptions are
generated from the physical layout, and secondly of functional simulation of the derived cir­
cuit. Symbolic design techniques simplify the circuit extraction task as they introduce struc­
tural or circuit information into the layout file and remove unnecessary geometrical data.
Interactive design techniques, however, place additional constraints on verification in that
they demand fast response in order to avoid slowing the interactive design cycle.

This paper describes verification techniques that have been implemented on MULGA [L] -
a UNIXt based interactive symbolic layout system. They consist of two programs which per­
form nodal circuit extraction and gate decomposition , and EMU - a transistor level MOS tim­
ing simulator. All programs are written in the C programming Language and run under the
UNIX operating system in a microcomputer based design station.

2. MULGA

Symbolic layout provides a means of abstracting the detailed and often laborious task of
mask design. rt offers the advantages of manual layout with regard to density, along with
reduced design time and reduced likelihood of manual error . MULGA is a UNIX based
interactive symbolic design system consisting of a suite of programs residing on a high perfor­
mance color display station. Figure l shows the various software components of MULGA and

t UNIX is a trademark of Bell Laboratories

CALTECH CONFERENCE ON VLSI, Janua~y 1981

286
8 Pyan Ackland ~ nd NeiL Weste

INTER­

ACTIVE

EDITOR

r---r
I I

INTER­
ACTIVE
EOI TOR

MULGA

XY CONV.

PROCEDL
OEFN .

CHIP

ASSEMB.

Figure 1. MULGA design system

the way in which they come together to effect a design.

-,
'
EMU

GATE

The system is based around a symbolic Intermediate Circuit Description Language
(ICDL) which uses a derivation of the co-ordinode notation introduced by Buchanan and
Gray (2]. It combines circuit topology with geometric placement on a coarse virtual grid. In
this way , the language captures designer intent with respect to the circuit, rather than a collec­
tion of abstract geometric forms .

The basic structure in ICDL is a cell which is a collection of elements placed on a virtual
grid as shown in Figure 2. These elements may be devices, wires, contacts, pins, or other cell
instances . Pins are named interconnection points that have no physical meaning in the final
layout. They are a very important attribute of the language , however, and are used exten­
sively in cell placement procedures and circuit verification. Figure 2 shows a CMOS 2-input
nand gate represented graphically along side the textual JCDL description of the cell. Note
that each line of text corresponds to an actual circuit component rather than a geometrical
shape. Components are resticted to lie on grid intersection points as shown. Note, however,
that this grid is only a relative placement network which defines the topology of the layout.
Actual physical dimensions are determined later by a compaction process.

ICDL cell descriptions may be generated either via the interactive editor or else procedur­
ally using the C programming language. Once the designer is satisfied with the symbolic

COMPUTER-AIDED DESIGN S ES SI ON

Fun e 1 i o rz a ~ V e r> if i c a t i on 1' >'! •4 n I "1. t P r> a. r• t i. v a SUm b o 1, i. c
IC Des ' grz g >'l Vi ~nnment

begin nond2
10 pin ol 1 1

p i n ol 1 8
pin poly 4

pin poly 6
pin ol 7 ~

dev n or•1
dev n or•1
dev p or • 1

6 dev p or • 1
wire ol 1
wire ol 1
wl r e poly

4 wl r e poly
wire o I 3
wl r e Ndlf
wire Pdif

2 con cut 7

con cut 7

con cut 3
con cut 3
con cut ~

end

Figure 2. ICDL description of 2-input CMOS nand gate

287

VII

vdd
9 A

9 8

z
4 3
6 3
4 6

6 6

1 8 1

8 8 8

4 3 4 9
6 3 6 9

6 7 6 7 3
3 1 3 3

~ 6 ~ 8

3
6

1

6
8

description , the file is compacted. The compaction program examines each symbolic grid line
in the layout to determine how far it must be spaced from its neighbours in order to satisfy
process design rules. Compaction information is stored in th e design grid file. This file, along
with the original IC DL description defines the minimum cell geometry assuming no o ther
constraints in the design .

A chip assembler program takes the design grid file along with a specified chip floor plan
and generates a mask coo rdinate file describing the actual physical location of the symbolic
grid lines in the final layout. The chip assembler frequently needs to expand previously com­
pacted cells in order to maintain global connectivity. The final step in the forward design path
is the conversio n and placem ent of cells into XYMASK data files. XYMASK is the geometric
mask definition language used by the Bell System. A second interactive editor provides a
means whereby the designer can view a nd evalua te his final design .

The verification phase consists o f two circuit extraction programs a nd EMU - a transistor
level MOS timing sim ulator. The first program performs node extraction a nd produces , in
addition to the node list, a transistor level description of the circuit suitable as input to a cir­
cuit s imulator such as SPICE. The second performs gate decomposition producing the higher
level circuit description required by EMU . The following sections describe the operation of
these three programs.

CALTECH CONFERENCE ON VLSI, Januar>y 1981

288

3. NODE EXTRACTION

The complexity of the circuit extraction process is heavily influenced by the nature of the
layout definition language. One of the advantages of ICDL is that it carries implicit circuit con­
nectivity information along with the physical topology . As shown in Figure 3, devices have
designated connection points which are related by simple geometric rules to the center of the
device. Wires serve to connect devices and external connections via interlayer contacts.
Electrical connectivity is established when two elements exist on the same layer at the same
virtual grid position. The pin construct aids the designer in naming specific nodes and con­
nection points. This implicit connectivity is used, in conjunction with a simple algorithm, to
arrive at a transistor node table description of the cell.

Figure 3. Implicit connectivity of ICDL components

The algorithm begins by first reading in a complete description of the JCDL cell. Following
this, each pin, contact and transistor connection is assigned a different node number. Figure 4
shows a hypothetical net of components labelled in this manner. If there were no wires in the
circuit, all such initial node numbers would be unique. Wires serve to connect components
and reduce the overall number of unique nodes in the circuit. Accordingly, each wire is
examined in turn to determine which nodes are redundant. A list is made of all nodes belong­
ing to that wire. If the wire crosses another wire of the same type, connectivity is established
by adding one node from the new wire to the old wire node list.

These wire node lists are used to eliminate redundant node numbers and generate a node
net list description of the circuit. Pin names are used, wherever possible, to identify named
nodes. Un-named nodes are given an internally generated name. Parasitic capacitance values
for each node are calculated using the topology contained in the JCDL description along with
absolute grid dimensions obtained from the mask coordinate file and specified process param­
eters. At this stage, sufficient information has been gathered to produce a transistor level cir­
cuit description. A simple filter converts this data into a SPICE simulation file. Figure 5
shows the simulation file generated from the 2-input nand gate described in Figure 2.

COMPUTER-AIDED DESIGN SESSION

Functionar VePification in an Inte~a~tCve ~ymboli~
IC Desig n Envi ~onment

18 19

10 12

1 I
2 11

X 3 20

)i(7 22

21 X 8
9

13
4)i(

1
X 5 14 X 7 16 15

16 23

Figure 4. An example of initial node numbering

. SUBCKT nand2 (vss
MNl Ir21 A VSS vss
MN2 z B Ir21 vss
MPl z A vdd vdd
MP2 z B vdd vdd
CMvss vss r2l CMTOSH 42
CNTvss vss r2l CN+H 12
CMvdd vdd r2l CMTOSH 42
CPTvdd vdd r2l CP+H
CPA A r2l CPTOSH 36
CPB B r2l CPTOSH 36
CMZ Z r2l CMTOSH 42
. FINIS

12

vdd A B
N7A

N7A
P7A
P7A

Figure 5. SPICE description of 2-input nand gate

4. SIMULATION

X CONTACT

-8-DEVICE

z)

Analog circuit simulators such as SPICE give very accurate reliable feedback as to the
functional operation of a circuit. They tend , however , to be very expensive in terms of com­
puter and engineer time. ln an interactive design environment, ease of operation a nd fast tur­
naround are of paramount importance and some accuracy can often be sacrificed to achieve
this . For these reasons, a UNIX based MOS timing simulator known as EMU was developed.
An important feature of the simulator is the fact that it is a resident part of the design station
software and is therefore capable of giving the designer fast feedback concerning the opera­
tion of his circuit.

CALTEC H CONFERENCE ON VLSI, Janua~y 1981

290

I I

r---,-
1 I I
I I -

I -I L

' r I I
I I
I I

--~
I I
I . -

I

I I I
Ill
111,----,--
1 I I I I

I

I
I
I
I

CURRENT SOURCE<:]

CAPACITIVE NODE e

(a) Generalized showing current so urces and voltage nodes

r­

' I
I

I
L----t

I
I
I

.J I
__ .J

T

(b) Bi-directional circuit element

Figure 6. EMU circuit model

Timing s imulators fall somewhere in between ci rcuit simulators and logic s imulators . They
model digital circuits as collecti ons of idealized transistors which may be grouped in a defined
manner to form simple logic functions . Unlike logic simulators, they generate an analog
waveform a nd are able to deal with limited analog effects such as charge storage and bidirec­
tio nal c ircuit elements. Performance, however, is typically one to two orders of magnitude
faster than analog circuit simulators. EMU is a MOS timing simulator which, like MOTJS [3],
uses certain properties of the MOS transistor to greatly simplify the circuit model. These pro­
perties are represented by the following approximations:

COMPUTER - AIDED DESIGN SESSIO N

Functio nal Ve Pi f ication i n a n I~ te ractive Sy mbolic
IC Desi gn Env iPo nme n t

l. The input resistance of the gate terminal is infinite, i.e. the input impedance is purely
capacitive.

2. The leakage current of a MOS device is zero.

3. The channel may be represented as a voltage controlled d.c. current source.

4 . In a self-aligned digital process , Miller effects are negligible.

5. The impedance to ground at any node is dominated by diffusion , gate and wiring capaci­
tances which are voltage independent.

These approximations lead to the model shown in Figure 6(a). The circuit consists of a
number of capacitive nodes interconnected by various voltage controlled current sources. Any
number of current sources may drive a single node . Bidirectional circuit elements are
represented by two sources as shown in Figure 6(b). Current sources may be transistors,
load devices or compound gate structures.

4.1 Compound Gates

MOS gates typically consist of driver transistors connected in series/ parallel combinations
as shown in Figure 7. Parallel branches pass current if any of the component elements con­
duct. This is equivalent to an OR function . Similarly, series branches conduct only if all
component elements conduct- hence an AND function.

VDD

z

Z c A . 8 + C. (0 + E)
D ()oooool~

E o---+----'

vss

Figure 7. Typical CMOS gate construction

CALTECH CONFERENCE ON VLSI, JanuaPy 1981

292

Although a logic gate can be simulated as a collection of individual transistors, much data
space and simulation time can be saved if it can be modelled as a single current source.
MOTIS uses the concept of a compound gate in which series/ parallel combinations of driver
transistors are lumped together into a single data structure. It is based on the following
approxi,rnatio ns:

I. The total curren t sourcing a node is the sum of the currents sourced by all parallel
branches connected to that node.

2. The current sourced by a branch containing several elements in series is the inverse sum
of the currents that would be sourced by each element if it were the only element in the
branch.

3. All transistors in the gate structure operate independently. Their only point of interaction
is through the gate output node.

EMU uses this same compound gate construction. Driver transistors are specified in a
"reverse polish" manner as shown in Figure 8. Transistor position in the gate is defined by
the operators push, parallel and series. Push places a transistor on to an imaginary stack.
Parallel means that the named device is in parallel with the top element of the stack. The
resulting parallel combination replaces the element on the s tack. Series means that the named
device is in series with the top element of the stack. The resulting series combination replaces
the element on the stack. Parallel or series without an operand, operates on the top two ele­
ments of the stack and pops the stack one position.

PUSH (A). PARL(B). PUSH (C). PARL (0). PARL (E). SERS.

PUSH (F). SERS (G). PUSH (I). SERS (J). PARL (H). SERS. PARL

Figure 8. Reverse Polish gate specification

This data structure is simply interpreted by a "reverse polish" current calculato r. The calcu­
lator uses a real stack to store transistor cond uction currents. The operator push causes a new
current to be pushed on to the stack. The operator parallel causes two currents to be added.
Similarly, the operator series causes two currents /0 and Jb to be combined according to:

I I I -=-+-
/ Ia l b

."' u ., • t i ? n t 7 v p ,. i r 1. c a t i () n i n. . l'1 T "! 1- :? t• .ll' t i I) ,, :-~ I I 17) l> •) l ; ~
~ Design En vi ~onmPn ~

4.2 Gate Advancement

293

Gate advancement is the technique by which node voltages are updated for each new time
~tep of the simulator. Referring to Figure 6, each node in the circuit model is dominated by a
capacitance to ground C. This means that for a sufficiently small time step, node voltages
within the circuit are essentially constant. Source currents, which are in turn functions of cir­
cuit voltages are therefore also constant. Suppose a node is driven by n current sources

n

11> ... 1n . The total current into the node is then I = ~'k· For a sufficiently ~mall time step
k - 1

(t - t 0), the new node voltage V (t) is given by:

l (t - t0)
v(t) = V(t 0)+ C

The accuracy of this simple forward integration scheme depends critically on the choice of
time step. If the time step is too large, circuit voltages and currents may change significantly
during one iteration and errors will be introduced. In addition, voltages tend to overshoot
leading to numerical instability - especially with bidirectional circuit elements such as
transmission gates. On the other hand, if the time step is too small, much simulation time is
wasted iterating over unnecesarily small time intervals.

Rather than leaving this delicate choice of time step to the operator, EMU automatically
adjusts the time step to maintain simulation accuracy . It does this by monitoring the max­
imum voltage step occuring from one time instant to another and adjusting the timestep
accordingly. Simulation thus proceeds rapidly during periods of low circuit activity and then
slows down to critically examine those periods when changes are taking place.

4.3 Device Model

The basic Sah model is used to calculate MOS transistor channel current. The equations,
as applied to an N channel device are:

Cutoff: IVasl < V,

Non - saturation:

Saturation :

los= 0

IVcs - v,l > lvosl

lvs =f3 [;] [(VGs-V,) Vvs - (V~s> 2]
I v GS - v, I .:S I v DS I

r WI] (V GS 2- V,) 2
los = (3 [

where w and I are the channel width and length respectively.

Back-gate bias effects are taken into account using table lookup techniques to calculate per­
turbations in threshold voltage.

4.4 OPERATION

The operation of EMU is characterized by four software states. Initially, EMU enters the
command state. This is the common state from which all others can be entered. It is used to
set simulation parameters, define clocks, display portions of the data base, initialize inputs and
format the output of results. The circuit state is used to create a circuit description in the data

CALTECH CONFERENCE ON V£SI , Janua~y 1981

294
8Pyan Ackland and Neil Weste

base. It is used to define inputs and nodes, assign gates and set circuit capacitances. The pro­
cess state is used to set process parameters such as transistor threshold voltage and transistor
gain. The execute state represents the actual simulation. Following execution, the simulator
returns to the command state. Command, input and process states each have their own
input language which may be entered interactively or via an predefined input file.

4.5 Performance

EMU is written in C and will run on any UNIX based machine. ln particular, it runs o n
the LS/ - 11 /23 - the host processor in the MULGA design station . It has also been imple­
mented, however, on a VAX- 11 /780 and a Motorola 68000. The 11/23 implementatio n occu­
pies approximately 25K bytes of code space leaving 30K available for circuit deftnitio ns. This
is sufficient to hold a circuit of about 2000 transistors. Table I shows some simulation run
times for a sample circuit - a 32Xl bit CMOS static RAM. This circuit contains 260 gates
which in turn contain some 770 transistors. Note that even on the 11 /23 microcomputer, this
type of circuit can be simulated in a time which compares favorably with the time needed to
perform an off-line sim ulation on a larger machine.

SIMULATION RUN TIMES (sees)

LSI-11 I 23 1094

VAX-11/780 129

68000 {4 mHz) 1010

68000 (8 mHz) 585

TABLE I SAMPLE RUN TIMES

5. GATE DECOMPOSITION

The nodal analysis program described in Section 3 produces a transistor net list which can
be used to generate a transistor level circuit description for EMU. The speed of the simulator,
however, is directly related to the number of active current sources in the circuit. Accord­
ingly, a gate extraction program has been written to process this transistor net list and convert
it, where possible, into the compound gate structures recognized by EMU.

COMPUTER- AIDED DESIGN SESSION

Fun~"tion tl Ver>ifi ~ rtf-inn i"'. ''n :-ntR~'1<' tive .- ,~,.,:·ol i •
DeR : gn Env~~n~~A~t

295

As a first step, nodes are characterized as either inputs, outputs or internal nodes. Outputs
are defined to be those nodes which connect (in the case of a CMOS design) to the drains of
ooth an N and a P transistor. Inputs are those nodes which connect o nly to transistor gate ter­
minals within the cell. All remaining nodes are assumed to be internal. The algorithm then
examines each output node in turn, and searches for all N devices connected either directly
or indirectly (through an N channel) to that node. Any branches tha t pass through othe r o ut­
put nodes are assumed to contain transmission gates and are ignored. All such N branches
must eventually terminate at the negative supply rail if they are indeed part of a compound
gate structure. Branches that do not satisfy this condition are discarded. This is equivalent to
travers ing the graph of all potential gate transistors connected to the o utput node. Figure
9(a) shows a number of devices connected to an output node Z. The N transistor graph that
is derived from this circuit is show n in Figure 9(b). Each device is represented by a simple
PUSH operato r, consistent with the notatio n described in Section 4.1 .

(a)

C-i

•z•

(b)

•vss·

Figure 9. Example of gate device graph extraction from a circuit

CALTECH CONFERENCE ON VLSI , Januar>y 1981

296

Brya~ Ackland and Neil Wes te

The gate transistor graph is then reduced by successive parallel and series merging until a
si ngle bra nch remains. At each merge, th e appropriate operator (SERIES or PARALLEL) is
added to the bra nch descriptio n. The final result is the desired reverse polish specification of
the transistor graph. Figure 10 s hows the four s teps required to reduce the graph of Figure 9.

•z•

PUSHIFI •z•
SERSIGl I I

I PUSH IAl I I PUSH \ 8 1 I PUSHIAl PUSH IF!

PARL\81 SERS IGl

I I
PUS HIC l PUSH \ I)

I PUSH IC) l PUSH 10) J I PUSH tEl I PUSH Ill
PARLIOI SERS IJ l

SERSIJ l
PARLIE l PARLIHl

I PVSH(Itl I 1 J
•vss·

·vs:-.·

(a) (b)

•z•

T
PUSH tAl

PARL 181 I I
PUSH IC l

PARL 101

PARL tEl
SERS

PUSH lfl

SERS lGl
PUSH Ill

PUSH lA l PUSH ifl

PAR LIB l SERSIGl

PUSH IC l PUSH(I l

PAR LIOl SERS IJ l

PARL IEl PAR L IHl
SERS SERS

L I SERS IJ l

PARL lltl
•vss · SERS

PARL

(d) 1
• VSS •

(c)

Figure 10. Series/parallel reduction of device graph

~O~PUTER -AIDED DESIGN SESSION

Punctiona 1 VPrifica~ion in ~~ I~ter1~tive SymboZi~
IC Design Envi~onmP.nt

z

8

A

This process is then repeated for the P transistor chain. The two expressions are then
combined to produce a complete gate description . Transistors not absorbed by this extraction
process are retained as single transistor transmission gates. Figure II shows the gate level
description that was extracted from the 2-input nand gate example of Figure 2. This descrip­
tion was given to EMU and Figure 12 shows the actual simulation result.

I I
0 8

nand2(A.B.Z)

EXTERN A. B:
EXTERN Z:
{

GATE <Z. 5):
PUSH CA. D : SER <B. D : PCH 0 :
PUSH CB. 1): PAR CA. D:

I NCAP CA. 3121) :
I NCAP <B. 3121) :
OUTCAP<Z.70):
ROUCAP CZ. 9) :
ROUCAP CA. 11):
ROUCAP <B. 11) :

}

Figure 11. Gate level description of 2-input nand gate

\ ~ ~ 1(

I I I
I I

16 24 32 40 48 56

Figure 12. Simulation plot of 2-input nand gate

II

64 72 80 (nS.)

CAL TECH CON FEREN'CE ON VLS I ~ Janua roy 1981

B r> !!'l '1 A c 1<. land rp t rl N e i l We s t e

6. CONCLUSIONS

In an interactive design environment, verification tools must be fast and readily accessible
in order to encourage the designer to perform this vital task. This paper has described three
tools which meet these criteria by actually being part of the resident design station software.
In addition, they have the advantage of being written in C and UNIX, making them readily
transportable to other design systems.

REFERENCES

[I] WESTE. N ., "MULGA - An interactive Symbolic System for the Design of Integrated
Circuits", Bell Sys. Tech. Journal. to be published.

[2] BUCHANAN, 1., "Modelling and Verification in Structured Integrated Circuit Design",
PhD Thesis, University of Edinburgh. Scotland,l980.

[3] CHAWLA, B.R. , GUMMEL, H.K., and KOZAK, P., "MOTlS - An MOS Timing
Simulator", IEEE Trans . on Circuits and Systems, Vol. 22, No. 12, Dec. 1975, pp. 901-
910.

COMPUTER-AIDED DESICN SESSION

