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Abstract 

It is the thesis of this report that much of what is presently 
thought to require specialized VLSI functions might instead be achieved by 
combinations of fast general purpose single chip computers with upgraded 
communication facilities. To this end, the characteristics of applications 
of this nature are first surveyed briefly and some working principles 
established. In the light of these, three different chip philosophies are 
explored in some detail. This study shows that some upgrading of typical 
single chip I/O will definitely be necessary, but that this upgrading doe s 
not have to be complex and that true multiprocessor-multibus operation 
could be achieved without excessive cost. 

I. Example applications 

Without doubt two of the most important computer applications of the 
coming decade will be graphics and speech processing. In turn, two 
principal characteristics of these applications are that the computation 
is often divisible into modular components and that they are often real 
time driven. Hence the requirement for speed which also points in the 
direction of specialized hardware. Examples may be found in the recent 
literature: 

1 . In a recent graphics processor (3], 12 copies of a specialized 
chip in combination are proposed to process graphic images for rotation, 
s k e w , t r a n s 1 a t i o n , a n d v a r i o u s k i n d s o f s c a 1 i n g a n d c 1 i p ping • The 
computation rates of the component modules do not seem incompatible of the 
performance expected of next generation single chip computers. 

2. A recent text-to-speech system [4], employs two general purpose 
processors feeding into specialized hardware. At the anticipated three 
character per second input rate, the second processor communicates data in 
packages of between 2 and 130 bytes every 10 milliseconds. 
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3. As can be seen from a recent survey, word recognition and 
continuous speech recognition systems [5), while still largely in the 
laboratory stage, are clearly developing along modular lines. The acoustic 
analysis module of one system [6] (itself done by FFT and divi5i ble into 
modules), passes samples of 14 functions every 10 milliseconds on to the 
phonetic analysis module. Another [7], using software modules on a last 
generation mainframe, quotes ratios of cpu time to speech time of the 
following modules in series: Signal analysis 3:1, Spectral similarity 2:1, 
R~gion definition 2:1, Boundary placement 1:1. 

It is to be noted that the information flow in all the above systems 
is unidirectional. As a contrast to this, a very common structure with the 
present generation single chips is to employ them as the slaves in a 
master-slaves configuration, eg. inside an intelligent terminal. In this 
case the communications are sometimes bidirectional. Another recent 
example of the master-slaves bidirectional configuration [8] uses special 
purpose processors to scan superimposed codes of a data base index. 

All these applications are of course an illustration of the fact that 
parallel processing applications are emerging first in the fixed purpose 
realm. Although the ones mentioned here do not constitute a large number, 
they perhaps serve to give some idea of the features desirable in single 
chip computers which would serve them. 

II. Working principles 

In this section we set down what seem to be reasonable principles to 
be drawn at the outset concerning inter-chip communications in this 
context and some of the reasons for prefering them. 

1. The processors will manipulate data in 16 bit words. In single 
chip computers the 16 bit word length will play for the next several 
years, and is sufficient for digital representation of analog 
quantities. 

2. The number of pins per package is strictly limited and will not 
greatly differ from current practice. 

3. Communications will be assumed to be word parallel. This is 
somewhat a choice of convenience if other considerations permit. Parallel 
ports are required anyhow for uniprocessor applications, and while serial 
communication could still be an added alternative, a decision to employ 
parallel communication will avoid the necessity for repetitive conversions 
through on-chip UART devices. In addition the use of the parallel ports 
would avoid further disparity in the estimated two orders of magnitude 
which separates the speed of communications internal and external to the 
chip [9]. 

4. There is no need of an address bus. Present designs for multibus 
architectures (eg . Multibus, Versabus, etc) are based on the arbitration 
of complete parallel bus structures, including the address bits [eg . 10]. 
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In our context however this does not seem to be necessary. This is becaus e 
we expect each communication (of parameters or results) between components 
of a modular computer structure to consist typically of a message or 
packet incorporating a number of words. This is shown in the applications 
d esc ribed above. It has also b ee n our experience with simulated 
applications for the Stony Brook Multicomputer, and in fact incorporated 
into the design of the k e rnel [11] . So if a whole package of words is 
going to a single destination, the n an address bus would lie idle for all 
data words after the first. A destination address may as well be 
incorporated in the pac kage hea d e r. 

5. Bus connectivity: The next question to be addressed is how many 
distinct communication ports should emerge from a computer nod e . Clearly 
one is sufficient (eg . Ethernet), but in the present context not very 
inte resting since the c onseque nt restri c tion to a single tim e shared bus 
1 im its the concurrency possible. Performance is one of our concerns. If a 
condition were made tha t the processor internal bus must be available at 
the pins for testing purposes, then a minimum of 2 ports per node would be 
necessary, since distinct processor busses could not b e direct ly 
interconnected . We will assume her e that this is not the case,- that 
internal chip logic can be arranged so that the processor internal bus is 
available for testing at chip reset time, but after that a mode change can 
be effected which transforms that port into a buffered communication 
facility . 

What th e n should be the connectivity of a node? Hardware for the 
X-tree project [12] is being constructed with 5 ports per node, a lthough 
this would impact the pin resources of standard single chip packages . Also 
it is not clear that such a port multiplicity is necessary to b e a ble to 
construct th e network topologies considered in the X-tree literature, or 
to accommodate the bus loading of typical applications . This is becaus e in 
fact, communication ports can be configured with appropriate control 
signals so as to be shared, and the apparent connectivities of modular 
computer graphs seen in the literature does not have to correspond to the 
number of bus ports coming off the chip. For example, the Stony Brook 
Multicomputer [11], though normally drawn as a graph having up to 6 edges 
to a node (fig. la), would, if implemented with single chip computers, be 
most conveniently partitioned so as to use only 3 port types per node (fig 
lb). Simulation studies of typical applications [13] did not show bus 
loading as one of the limiting performance factors of the network. 

Let us therefore consider the number of busses emerging per node. If 
this is two, then the maximum communication concurrency of the whole 
net-work is equal to the number of computing nodes (n), and occurs when 
they are all strung out in a simple pipeline as in figure 2. This assumes 
the use of buffered or DMA type ports able to operate independently of the 
CPU, otherwise, with program controlled ports, the maximum would be n/2. 
Of course it would also be less if some busses were incident on more than 
two nodes. Suppose now that the number of busses incident on a node is 
three. Then as far as the bus hardware is concerned the communication 
concurrency of the network might exceed the number of computing nodes. But 
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unless the node computation is something rather trivial, it seems doubtful 
that results would be produced at a sufficiently rapid rate to justify 
anything like such a high communication/computation ratio. This supports 
the argument, already almost dictated by current pin limitations, that the 
number of bus ports should not exceed two. In paragraph 7 below, 
directionality arguments lead us to the conclusion that the number of 
ports should be exactly two. 

6. Speed-up by pipeJining and synchro-parallelism: For the internal 
structure of processors it is well known that there are two important 
recourses for when it is desired to achieve a computation rate wich 
exceeds the speed of the hardware available. 1hese have been termed 
'pipeli ning' and 'synchro-parallelism ' [14]. They are illustrated in the 
context of n computer chip nodes in figures 2 and 3 . 

In the first, the serial combination, each computing node performs a part 
of the total computation and passes the intermediate results on to the 
next stage. In the simplest a rrangement , the constituent computations all 
take the same amount of time, T, to complete. Then although a single 
computation still takes time nT, the results of repeated computations are 
streamed out at time intervals ofT. If the constituent computations take 
differing amounts of time, then the technique may still be effective, but 
handshaking controls must be provided to make the faster components wait, 
and the overall results will be produced at intervals T corresponding 

max to the slowest. 

In the second, (fig 3), a parallel combination utilizes a staggered 
computation with input parameters and output results sequenced on shared 
busses. In the simplest form the constituent modules could be doing 
identical computations, or similar computations with different internal 
coefficients, and would therefore all take the same amount of timeT. 
Again the effective computation rate is speeded up n times, in this case 
one result being produced every T/n sees. In a more complex case, the 
computations might take differing amounts of time, and then again the 
computation must be controlled to make the faster ones wait. In a more 
complex case still, serial networks of parallel stages might be indicated 
to more closely match the speeds of the pipeline stages, or alternatively, 
parallel networks of serial combinations, e tc. 

The important point is that the communication facilities that we 
propose should accommodate these likely to be encountered cases. 

7. Bidirectional vs unidirectional ports: From the fixed applications 
literature we conclude that unidirectional communications are those most 
called for, although bidirectional communications are an important 
minority which must be accommodated. However, the bidirectional facility 
would be complex for the message based type busses we have outlined so 
far. It would require some type of semaphore system to control the 
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FIGURE 2 PIPEL IN E OR SERIAL CONNECTION 

FIGURE 3 SYNCHRO-PARALLEL CONNECTION 
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intended bus master and direction of data transfer and to resolve 
collisions. Once established, communications on a fixed route and 
direction might proceed efficiently, but the protocol to change these 
would be a burden in terms of pins and time. The resulting overhead would 
then lie unused on what seems to be the majority of unidirectional 
communication applications. The alternative would be to employ a 
unidirectional transfer protocol on each port which was as simple in 
design as possible, as long as it could be shown that bidirectional 
applications could still be serviced (at the cost perhaps of using one or 
two extra chips). This will be the approach adopted here. 

III Design for upgraded single chip computer,- version 1 

A block diagram of a proposed design for an upgraded single chip 
computer is shown in figure 4 and will be used as a first model. 

The large shaded b]ock in the interior labelled SCC corresponds in 
function to a single chip computer of existing design. This will have the 
advantage that the design and debugging of this part has already been done 
and hopefully, partially amortized. As shown in our diagram we assume only 
that this part has two bidirectional I/O ports label.led A and B, and two 
interrupt inputs TO and Tl. 

The additional logic circuit functions which give the new chip its 
upgraded capability are shown in the surrounding unshaded area of figure 
4. Besides all the original pin connections to the SCC (which are led 
straight through), there are 8 additional pins for the added functions. 
This would increase the typical current 40 pin package to 48 pins which is 
not regarded as excessive. The added logic has three sections. Going from 
right to left in the figure, these are the arbitration control, 
control-status register, and the receive selection logic. The internal I/O 
ports are connected through to the external I/O ports Sand R (for send 
and receive). Since the internal ports are bidirectional, while the 
external ports are unidirectional, we can utilize the remaining two 
functions to read and write the new control-status register with the 
existing SCC instruction set as shown. The need for the new arbitration 
logic arises because we are here absorbing the functions of the separate 
bus arbitration chip of existing commercial designs. It will operate on a 
simple daisy chain principle and be used chiefly for arbitration of the 
send functions. The receive selection logic is responsible for enabling 
the communciation pathway leading to this chip from the send port of 
another. When the module is not so selected, its receiver port and 
handshake lines should be in the high impedance state. When the READY FOR 
RECEIVING flag is set, and the SELECT input is acti•,e, the receiver 
selection logic will interrupt the SCC using pin T 0 , which will invoke 
the attention of the communications kernel. 

In two matters concerning this design we have been a little 
conservative, but these could presumably be adjusted later as the 
technology permits. Current instruction sets typically include a repeat 
function, which as applied to I/0, could be capable of streaming words at 
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an exceedingly rapid rate. Although we envisage multiple computer chips in 
close proximity, say on the same board, we are unsure that this rapid rate 
could be correctly synchronized over a variety of parallel and serial 
connections, and have therefore opted for the usual double handshake by 
word (see the data valid and accepted pins in figure 4). Secondly, it 
would be entirely feasible even now to insert FIFO buffers between our 
internal and external ports in each direction. This might be particularly 
effective in combination with the new 'repeat I/O'instructions, and if the 
mess age sizes were standardized . We will examine a configuration similar 
to this in a later section. 

Communication between modules 

Figure 5 shows the format of the message block. The first word contains 
an eight bit field which carries addressing information about the 
receivers, followed by eight redundant check bits. This is similar to a 
scheme suggested by R.B. Kieburtz for the Stony Brook Multicomputer. It is 
to provide message synchronization in the absence of input and output 
control pins allocated to this purpose. The kernel of the receiver will 
output on its ERROR pin in the event of communication error or if it gets 
out of message synchronism with its sender. On receiving this through its 
TO/M interrupt input, the kernel of the sender will restart with a 
message header. The second word contains source address and message length 
fields. The whole message can also be protected with a longtitudinal check 
with errors reported on the same pin if desired. 

The most straightforward communication method supported by the above 
modules is illustrated by the bus connection in figure 6. 

All the modules which have their send ports connected to the bus 
will have their ARBITRATION IN and OUT pins strung in a simple cyclic 
chain. As sho wn an active pulse must be inserted into the chain at reset 
time to start things off. The arbitration logic in each module is 
responsible to check for the receipt of a pulse (token) at its input . If 
the WAIT FOR TOKEN flag is set by the kernel, then the TOKEN-IN bit will 
be set. Else the token will be passed on immediately by the hardware to 
the next module. This will make possible the simple sequencing of the 
synchro parallel connection of figure 3 (WAIT FOR TOKEN flags always set), 
or in a more asynchronous situation, a rapid round robin determination of 
which module is requesting service and is next in line. 

On the receiving side, the select line input of each receiver is 
connected from a different line of the data bus and all the DATA ACCEPTED 
lines of receivers attached to this bus are connectPd together in 
WIRED-AND fashion . This shown in figure 7. When quiescent, this output is 
in the high impedance state. However, when a receiver is selected it 
cha ng es this output to logic true or false, depending on its READY FOR 
RECEIVING flag. To the sender, its DATA ACCEPTED? input will not be true 
until a ll the receivers it has selected are ready. This makes possible the 
following communication modes to up to eight receivers; PUBLIC BROADCAST: 
all receivers in the subset designated by the sender receive the message ; 
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FIRST READY : the next receiver to be ready will receive the message. For 
both of these cases the receiver selection is mediated by the header word 
of the communication message block. In the FIRST READY case however only 
the rightmost bit in the header would be initially set and shifted one bit 
left after each timeout until either a ready receiver is found or all the 
receivers have been exhausted . In the latter case the kernel would then 
abort that transmission attempt and go to sleep until the next cycle of 
the daisy chain token. Thus FIRST READY is just a multiple application of 
the PUBLIC BROADCAST with a subset size of one. 

In applications in which larger fan-outs are called for, this may be 
obtained by simply connecting the chips in the form of a tree. In this way 
one extra layer of 8 chips could achieve a fanout of 256 and so on. This 
is the same technique commonly used in multiplexer and decoder trees. 

A detailed listing of the send and receive protocol sequence is 
given in appendix 1. 

Multi-computer configurations . 

Clearly the design we have outlined will be most efficient when used 
in simple serial or parallel unidirectional structures as in figures 2, 3, 
and 6. However, if bidirectional communication is desired, it can also be 
achieved as shown in the completely connected mesh network of figure 8. In 
this network, the receive port of each module is connected to every other 
send port, and vice versa. The disavantage of the complete connection is 
that a single bus and arbitration chain must encompass all modules. This 
implies that only one communication at a time can occur in the network. 
For increased communications concurrency a partially connected network 
would be more attractive such as that shown in figure 9. Such networks are 
truly multibus, with some unidirectional sections and some bidirectional. 

Finally, as an important special case we draw attention to the 
common master slaves connection with bidirectional information transfer. 
As shown implemented with our single chip design in figure 10, this is 
achieved by using extra chips. In some cases, such as a master slave 
configuration with multiple slaves , it may be necessary for the slaves to 
identify themselves when sending to the master. Of course this could most 
easily be accomplished if the slaves had different programs in their ROMs 
including their own ID's. If the slaves had identical ROM contents however 
identification could still be achieved without an address bus as follows: 
At reset time an initializing routine in each slave could run a counter 
until the intial receipt of the arbitration token. It could then associate 
an address to itself based on the value of this count, and use this 
aferwards in the sender ID field of the packet headers (see figure 5). 

IV. Pure Firmware Model 

Here we examine whether the communication objectives set out above 
could be achieved without the extra specialized on-chip hardware. For this 
purpose we assume again the single chip computer with the two parallel 
bidirectional ports • 

.. ,,..!ON 
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Without the dedicated hardware, communication protocols will 
necessarily be more complicated. As in other multicomputer environments we 
have to consider the questions of communication bus arbitration, module 
address selection, and the direction of information flow. Figure 12 shows 
our proposed utilizat'ion of the two ports to perform multicomputer 
communications . In the basic single chip computer, both ports A and B are 
bidirectional. For our present purpose port A would be the communication 
data bus and port B would be the control bus . Arbitration would be done in 
a fixed priority approach and only one-to-one module communication would 
be allowed. 

Communications between modules would proceed in three phases. During 
the first phase, arbitration of the communication bus would be performed. 
After a new bus master is assigned, the second phase is entered and the 
master would select the module with which it wanted to communicate. In the 
third phase, communications between the master and the selected module 
would be performed word by word on a handshaking basis . All modules would 
participate in the first and second phase whereas only the master and the 
selected module will be involved in the third phase. Detailed description 
of the protocol can be found in appendix 2. 

The size of the communications control prog r am will be about 300 
words. This estimation is based on the simple instructions used in section 
V to estimate the size of the arbitration program for the dedicated 
arbitrator . The timing of the arbitration process depends on the number of 
modules present. For example , if there were four modules on the bus, the 
time needed for the arbitration would be around 30 microseconds , assuming 
expected cycle times of next generation single chips. The address 
selection process would take at least another 3 microseconds . The timing 
of the message transmission would depend on the size of the message 
packet. 

The advantage of this protocol is that no hardware modification is 
necessary. However, since only one communication bus can be available, no 
pipeline or synchro-parallel configurations can be achieved . Also the 
arbitration and address selection processes described above would have to 
be emulated by software and all modules would have to participate whether 
they were parties to that communication or not. This would result in a 
large amount of time used up in communications control. These must be 
accounted severe restrictions of the pure firmware case and an indication 
for hardware support of some kind. 

V. Upgraded Chip with FIFO and Dedicated Arbitration . 

In this section we will examine a third case in which it is assumed 
that the technology would permit the inclusion on the chip of a first-in 
first-out buffer store to assist in the communication of the message 
packet. Since arbitration could now take place at the packet rather than 
the word level, the timing requirements are slowed to the point where they 
could be handled by a software rather than a hardware process, - in fact 
on an identical chip, specialized by its ROM program for arbitration 
control. 
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Otherwise we make similar assumptions as before, namely word 
parallel 16 bit communications and a 48 pin package limitation. Again one 
of the interrupt inputs will have to be multifunctional and du r ing 
multicomputer mode serve as a TRANSMISSION-END signal input . 

Figure 13 is the block diagram of the upgraded single chip 
microcomputer with FIFO. The module has two ports, namely port S for 
message transmitting and port R for message receiving. Both ports can be 
changed to bidirectional ports by software. The block labelled 'SCC ' at 
the upper right corner is a dual port computer . To the left of SCC is the 
address recognizer hardware which is used to perform address comparison . 
If an address match occurs, it interrupts the SCC to input the message in 
the FIFO. If the device is not selected, the FIFO will be cleared for a 
new message packet. At the lower right corner is the receiver control 
hardware whose function is to control the address recognizer hardware and 
FIFO, and to generate receiver handshaking signals. In the lower center is 
the receiver FIFO and its control register. The structure of the FIFO is 
similar to current industry FIFO's. The input data is written into the 
storage array in a location specified by the Write Address Counter (WAC). 
The current output word is automatically available at the output register. 
After the current word of data is used, the next output word is read from 
the storage array at the location specified by the Read Address Counter 
(RAC). To the right of the FIFO hardware is the control register for the 
upgraded hardware. Part of the control register's contents is used as 
handshaking signals for transmitting messages. 

Only one FIFO is placed on the receiver side in this scheme with the 
message words separately handshaken across under direct program control of 
the transmitter. This of course would be slower than if the message packet 
were transmitted between two FIFO's under direct hardware mediation. 
However we are using the FIFO here pricipally to simplify the control and 
we felt that two intermediary FIFO's would be more complex . The single 
FIFO scheme would still be faster than our first case because of the 
simpler synchronism -both of the communicating software processes do not 
have to attend at the same time. The receiver module can therefore poll 
the FIFO later and bring in the message with the fast repeat-I/O 
instruction. Thus in an N processor multibus system a bus concurrency 
close toN might be approached instead of being limited to N/2 as before. 
The detailed communications protocol for this case is given in Appendix 3. 

Use of upgraded microcomputer as bus arbitrator 

As we proposed in previous sections, our message communications 
scheme will be in packet format. There is a considerable amount of time 
lap between different packets being transmitted, which implies that the 
arbitration process can be achieved by software instead of dedicated 
hardware. In this section, we are going to examine the possibilities of 
using the same upgraded single chip computer as our communication bus 
arbitrator. Firstly, different arbitration schemes are discussed. 
Secondly, the size and speed of the arbitration program will be studied . 
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For use as an arbitrator, our upgraded computer will be operated 
in normal mode, which means it will have two bidirectional ports: A and B. 
Port A will be used as bus request port and port B will be used as bus 
granted port. Figure 14 shows how local communication buses are connected 
to the arbitrators. More than one arbitrator can be connected together 
hierarchically to produce a larger arbitration system. Figure 15 shows a 
possible arbitration system. 

Two different arbitration schemes could be implemented: Fixed 
Priority and Round-Robin systems. Pin 16 of the arbitrator bus request's 
port could be used to indicate which mode has been set, and pin 16 of the 
arbitrator bus grant's port used to indicate that the current bus master 
has released the bus. The fixed priority mode is entered when pin 16 of 
the arbitrator bus request's port is set to logic high. In this mode, pin 
1 will have the highest priority and pin 15 will have the lowest priority. 
When the current bus master releases the bus by lowering its bus request 
line, arbitration phase is entered and the request with highest priority 
will be honored. Round-robin mode is entered when pin 16 of the 
arbitrator's receiver is set to logic low. In this mode, all pins will 
have the same priority and requests will be honored in a circular 
fashion. By combining the two arbitration schemes we could implement a 
hierarchy arbitration system as in figure 15. Modules having the same 
priority level are connected to the same arbitrator which implements the 
Round-robin scheme, where the arbitrators themselves are connected to a 
master arbitrator which implements the fixed priority scheme . With this 
hierarchical parallel structure, we could connect any number of modules 
together and still have minimal delay time. Both round-robin and fixed 
priority algorithms have the same structure. While a current bus master is 
using the bus, the bus arbitrator will continuously perform next bus 
arbitration. As soon as the current master has finished, a new bus master 
can be assigned. With this approach, delay time can be minimized. 

Arbitration program outlines can be found in appendix 4. The 
sizes of both programs are about the same. Since we have to incorporate 
both programs into the program memory, their total size is less than 200 
words. Worst case arbitration delay time is when there is no 
pre-arbitration done, in this case the arbitration delay time will be less 
than 30 microseconds. When there is pre-arbitration done, which is the 
average or best case, the timing will be less than 4 microseconds. With 
this arbitration delay time, we concluded that the size of the FIFO should 
be efficiently be 64 words, since the time the transmitter takes to 
transmit one packet should be greater than one arbitration period. 

VI. Conclusion and Discussion. 

Of the three schemes examined we believe the pure firmware model 
has been shown to have inefficiencies which might cancel out the 
advantages of the multiprocessor operation in the type of applications 
envisaged. If technology and marketing considerations would permit the 48 
pin package then the inclusion of upgraded communication hardware would 
result in a more efficient system, and if a FIFO could be included, still 
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better. Realistically, these options may not be attractive in the first 
generation of 16 bit single chip computers since the communications 
software of two to three hundred words would be an appreciable fraction of 
the whole program memory space available. However, with each year that 
passes after that, with a doubling of program space, these schemes should 
become increasingly attractive. 

In conclusion, what we have advocated here for the single chip 
computer can be viewed as a low cost alternative to the more expensive 
multiprocessor-multibus architectures which have been proposed for the 
current family of multichip microcomputers. It has also been oriented 
towards the area of fixed rather than general purpose applications. In 
this context, the development of a firmware kernel in ROM to remove most 
of the burdens of the communications from the users is clearly of crucial 
importance. Such a kernel would clearly have differences with kernels now 
being developed for large experimental general purpose multicomputers 
(such as [11]), since it should be oriented towards simplicity and speed 
efficiency. 

An important property of the proposed chips is the flexibility of 
use and low cost. In this way the idea of employing extra chips of the 
same kind in a design can be easily entertained. Examples of this have 
been seen here for increasing communications fanout and for adding 
bidirectionality to the links. This perhaps may point the way to the use 
of such chips as this as general purpose system building blocks, much as 
discrete logic gates and programmed logic arrays have been used in 
previous technologies. 

Looking slightly further ahead, we can see that one of the factors 
raising the costs of these multicomputer applications would be the 
different application software modules which would have to be burnt into 
chips in different parts of the network (parallel arms, serial arms). In 
other words we would like our standardized modules to be exactly alike in 
all respects. Eventually this might be achieved as shown in figure 11, 
using a system of downloading the applications software at power-on time 
into modules based on RAM rather than ROM. Here is where a hierarchical 
memory might be indicated in each chip with a large dense dynamic RAM 
backing up a small static RAM cache. This would also add new functions to 
the kernel, with perhaps a bootstrap version in each module bringing in 
the applications software and then the running kernel. 
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APPENDIX 1 

Transmission: 

** The Kernel sets up the message block in its RAM. It will clear the 
READY-FOR-RECEIVING flag in the selection logic and set the WAIT-FOR-TOKEN 
flag in the daisy chain logi c. It then continues processing and 
periodically polls the TOKEN-IN bit in the I/0 register . When the daisy 
chain logic receives the token, it will check its WAIT-FOR-TOKEN flag. If 
the flag is set, it will set the TOKEN-IN bit in the I/0 register and 
c lear the WAIT-FOR-TOKEN flag. 

** When kernel knows the TOKEN-IN bit is set, it will change its 
transmitter port and handshaking lines from high impedence to logic false. 
RTLl interrupt line is also disabled. Afterthis, kernel will load latch A 
with first word of message and set the DATA-VALID out bit to true. (First 
word of message block is the bit pattern specifying which subset of 
receiver is chosen) 

** The kernel will initiate a timer at this instance. If the timer has 
run out before the DATA-ACCEPTED IN bit is set, it will abort the message 
transfer and reset the appropriate bits and flags. 

** When the kernel sees its DATA-ACCEPTED IN bit is set, it will 
acknowledge by clearing its DATA-VALID OUT bit. 

** When the kernel see its DATA-ACCEPTED IN bit is cleared , it will 
send the rest of the message by handshaking. When transmitting the second 
word of the message, it will check the TRANSMISSION-ERROR IN bit. If the 
bit is set, it will clear the DATA-VALID OUT bit and check the last word 
transferred. As soon as the TRANSMISSION-ERROR IN bit is cleared by the 
receiver, the kernel will set the DATA-VALID OUT bit and re-transmit that 
word to the receiver. The kernel has contra] over number of retries and it 
will abort the message transfer if that limit has reached. 

** When the kernel is finished with the transmission, it will clear the 
TOKEN-IN bit and set the READY-FOR-RECEIVING flag in the selection logic . 
After this, it will put its transmitter port and handshaking lines back to 
high impedence state. 

** Upon the TOKEN-IN bit is cleared, the daisy chain logic will pass 
the token to the next module down the chain. 

Receiving: 

** The SELECT input line of the receiver will be in high impedence 
state during receiving and will be in logic false state when waiting for 
input. 

** When the receiver's SELECT input is on, it will check the 
READY-FOR-RECEIVING flag. If the flag is set, it will change the 
DATA-ACCEPTED OUT line from high impedence to logic true. In addition, the 
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receiver's port and handshaking lines are all changed to low impedence. If 
the READY-FOR-RECEIVING flag is not set, kernel will set the DATA-ACCEPTED 
OUT line from high impedence to logic false and DATA-VALID IN line to low 
impedence. When the DATA-VALID IN bit is reset, the kernel will reset the 
receiver's handshaking line back to high impedence state. 

** The kernel will receive the rest of the message by handshaking with 
the transmitter. It will check for transmission error in the second word 
of the message. If error did occur, it will set the TRANSMISSION-ERROR OUT 
bit to true and discard that word. As soon as the DATA-VALID IN bit is 
cleared, it will clear the TRANSMISSION-ERROR OUT bit and waits for 
re-transmission of that word. When predetermined number of retries is 
over, kernel will abort the message receiving and reset its bits and 
flags. 

** When the message receipt is completed, the kernel will put its 
receiver port and handshaking lines back to high impedence state. The 
SELECT input is r eset to logic false. 

* 

* 

* 

* 

* 

* 

APPENDIX 2 - Pure Firmware Model. 

When the system first boots up, all modules' BB, BA, DV, DA, TE and 
TF lines are not asserted. Except for the highest priority module's 
BI line is connected to SV and the lowest priority module's BO line 
is connected to g round, all other modules' BI and BO lines are not 
asserted. 

When a module wants to gain access to the bus, first it has to check 
the BB (Bus Busy) line. If it is asserted, it has to wait for the 
c urrent master to finish. If BB is not asserted, the module will 
assert its BA line. Since the BA line is connected to all modules' 
Tl interrupt line (including itself), all modules will enter an 
interrupt service routine which then begin the arbitration process. 

The module which asserted the BA line will reset it. 

All modules will initiate a count down timer for maximum arbitration 
process duration. When the count times out and the BB line hasn't 
been asserted , arbitration process will be terminated and all 
modules will resume their previous processes. 

Meanwhile all modules sample their BI (Bus arbitration In) input. 
When this signal is asserted for a module which did not request the 
bus, then that module will assert its BO (Bus arbitration Out) and 
wait for BB assertion or timer run out to occur. If this module was 
not the one which requested the bus, it will assert its BB line . 

As soon as the module gains control to the bus, it becomes the 
current bus master. It then puts a d evice address word on to the 
data bus and asserts its DV (Data Valid) line. When its DA (Data 
Accepted) line is asserted by the selected module, the master will 
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* 

* 

* 

* 

reset its DV line and returns to its calling process to perform 
the message communication. If the DA line doesn't assert when 
the timer run out occurs, then the arbitration process will be 
terminated and all modules will resume their previous processes. 

When a module ' s BB line is asserted by a new master, it will 
wait for the device address word to determine whether it is 
being selected . If a module is selected, it will assert its DA 
line. When the master resets its DV line, the selected module 
will enter a communication routine. Other modules will terminate 
the arbitration process and resume their previous processes. 

The DA lines are wired OR together, so only one to one module 
communication is allowed. 

Communication will be performed on word by word handshaking 
basis. At any time if the receiver module asserts the TE (Trans. 
Error) line, master will try to retransmit the last word for a 
predefined number of times. If still fail, communication will be 
aborted. 

When the communication is finished, the master asserts the TF 
(Trans. Finished) line and waits for DA line assertion. When its 
DA is asserted, it will reset its TF and BB line and the 
communication is concluded. 

APPENDIX 3 - Upgraded Chip with FIFO 

The modules all have distinct coded addresses. Modules will generate their 
addresses during the system boot up phase. When the system first boots up, 
all modules on a local bus will assert their BR (Bus Request) lines. 
Depending on the arbitration scheme used by the local arbitrator, 
individual modules will be granted the bus in succession and can generate 
their addresses based on the time elapsed . 

Communications will proceed in two phases. During the first phase or bus 
arbitration phase, a module which wants to use the bus asserts its BR line 
and waits for its BG (Bus Grant) line to be asserted by the arbitrator. 
Once the BG line is asserted, the selected module will enter phase two 
which is the communication phase. 

Since receiving is performed by hardware and buffered by a FIFO, we expect 
all the modules on the receiving side are ready to receive when the 
transmitter is ready to transmit the message packet. However, if the 
Receiving Buffer Full bit of the control register is set, the receiver 
module has to wait till it is clear before it can accept any more message. 
Handshaking signals are used throughout the communications, and the 
receivers ' DA (Data Accepted) lines are wired AND together so as to ensure 
all the receivers are ready. 

When the module gains access to the local communication bus, it will send 
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out the message packet with a packet header word containing the coded 
destination address to the receiver modules. Depending on the coded 
address, message packets can be directed to an individual module or 
broadcasts to all of them. 

At any time, if the transmitter's Error-in-Transmission line is asserted 
by one of its receiver modules, the transmitter will retransmit th e last 
word up to a predefined number of times. If the error condition persists 
the transmitter will abort the transmission. 

When the transmission is finished, the transmitter module will reset its 
BR line . The arbitrator will then reset the corresponding BG line and 
asserts its Transmission End line to all the receiving modules. 

Once the Transmission End line is asserted by the arbitrator, all the 
receiving modules will check the packet header word and determine whether 
the message is intended for them. If the message is intended for a 
particular module its control logic will interrupt the sec in order to 
ship the message from the FIFO to the SCC ' s memory. If the message is not 
directed to the receiver, the receiver control logic will clear the FIFO 
for another new message packet. 

When a transmitter module is not the current bus master, its transmitter 's 
handshaking lines are in high impedence state. 

APPENDIX 4 - Arbitration programs 

Listing of the arbitration program: 

I* initialization phase, determine which arbitration scheme to use *I 

F-begin: Load save-req with 000 ... 000 
Load temp with request word 
temp<- temp logical AND 100 . .. 000 
temp = 0? 
(false) jump to £-wait-loop 
(true ) jump to r-wait loop 

I* e nter Fixed Priority mode, look for bus request *I 

£-wait-loop: 

ARrHITECTURE SESSION 

load req-wd with request word 
req-wd <- req-wd logical AND 011 . .. 111 
req-wd = 0? 
(false) jump to f-arb-1 
(true ) jump to £-wait-loop 
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I* determine who ~~ts the bus *I 

f-arb-1 : 

f-arb-lloop: 

load arb-end with 010 .. • 000 
load arb-curl with 100 ... 000 
left circular shift arb-curl 1 bit 
temp <- arb-curl logical AND req-wd 
temp = 0? 
(false) jump to f-grant-bus 
(true ) arb-end = arb-curl? 
(false) jump to f-arb-lloop 
(true ) jump to f-wait-loop 

I* grant the bus to the highest priority requesting module *I 

£-grant-bus: load bus grant word with arb-curl 
load bus granted with 1 
load save-req with 000 . . . 000 

I* now start doing pre-arbitration while the bus is busy *I 

f-arb-2: 

f-continuel: 

load req - wd-2 with request word 
req-wd- 2 <- req-wd-2 XOR arb-curl 
req-wd-2 <- req-wd-2 logical AND 011 •.• 111 
req-wd-2 c 0? 
(false) jump to f-continuel 
(true ) jump to f-arb-2 
load arb-end with 100 . •. 000 
load arb-cur2 with 100 ... 000 

I* determine whether the bus is being used *I 

f-test: bus-granted = 1? 
(false) jump to f-arb-2loop 
(true ) jump to f-poll 

I* check to see whether the current master has finished if finished , and 
there is an outstanding bus request, grant the bus. Otherwise continue 
pre-arbitration process *I 

f-poll: load temp with request word 
temp <- temp logical AND arb-curl 
temp = 0? 
(false) jump to f-arb-2loop 
(true) load bus grant word with 100 ... 000 
load bus grant word with 000 . .. 000 
load arb-curl with 000 . . . 000 
load bus-granted with 0 
save-req <> 0? 
(false) jump to f-arb-2loop 
(true ) load arb-curl with save-req 
jump to £-grant-bus 
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I* perform pre-arbitration *I 

f-arb-2loop: 

f-continue2: 

left circular shift arb-cur2 1 bit 
arb-end = arb-cur2? 
(false) jump to f-continue2 
(true ) jump to f-arb-2 
temp <- arb-cur2 logical AND req-wd-2 
temp = 0? 
(false) jump to f-set-or 
(true ) jump to f-test 

I* save the request from pre-arbitration process *I 

f-set-or: load save-req with arb-cur2 
bus-granted <> 1? 
(false) jump to f-arb-2 
(true ) jump to f-grant-bus 

I* enter Round-Robin mode, look for bus request *I 

r-wait-loop: load req-wd with request word 
req-wd <- req-wd logical AND 011 ... 111 
req-wd = 0? 
(false) jump to r-arb-1 
(lrue ) jump to r-wait-loop 

I* determine who should the bus be granted *I 

r-arb-1: 

r-arb-lloop: 

load arb-end with 010 ... 000 
load arb-curl with 100 ... 000 
left circular shift arb-curl 1 bit 
temp <- arb-curl logical AND req-wd 
temp = 0? 
(false) jump to r-grant-bus 
(true ) arb-end = arb-curl? 
(false) jump to r-arb-lloop 
(true ) jump to r-wait-loop 

I* grant the bus to the highest priority requesting module *I 

r-grant-bus: load bus grant word with arb-curl 
load bus granted with 1 
load save-req with 000 ... 000 

I* now starl doing pre-arbitration while the bus is busy *I 

r-arb-2: 

ARCHITECTURE SESSIO N 

load req-wd-2 with request word 
req-wd-2 <- req-wd-2 XOR arb-curl 
req-wd-2 <- req-wd-2 logical AND 011 ... 111 
req-wd-2 = 0? 
(false) jump to r-continuel 
(true ) Jump to r-arb-2 



I* determine where to start pre-arbitration *I 

r-continuel: 

r-new: 

bus-granted= 1? 
(false) jump to r-new 
(true ) load arb-cur2 with arb- curl 
jump to r-poll 

load arb-end with 100 .. . 000 
load arb-cur2 with 100 ... 000 
jump to r-arb-2loop 

I* check to see whether the current master has finished if finished, and 
there is an outstanding bus request, grant the bus. Otherwise continue 
pre-arbitration process *I 

r-poll: load temp with request word 
temp <- temp logical AND arb-curl 
temp = 0? 
(false) jump to r-arb-2loop 
(true) load bus grant word with 100 .•. 000 
load bus grant word with 000 ... 000 
load arb-curl with 000 ••. 000 
load bus-granted with 0 
save-req <> 0? 
(false) jump to r-arb-2loop 
(true ) load arb-curl with save-req 
jump to r-grant-bus 

I* perform pre-arbitration *I 

r-arb-2loop: 

r-continue2: 

left circular shift arb-cur2 1 bit 
arb-end = arb-cur2? 
(false) jump to r-continue2 
(true ) jump to r-arb-2 
temp <- arb-cur2 logical AND req-wd-2 
temp = 0? 
(false) jump to r-set-or 
(true ) jump to r-test 

I* save the request from pre-arbitration process *I 

r-set-or: load save-req with arb-cur2 
bus-granted <> 1? 
(false) jump to r-arb-2 
(true ) jump to r-grant-bus 

Note: save-req, temp, req-wd, arb-end, arb-curl, bus-granted, req-wd-2, 
arb-cur2 can be registers or memory words. 
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