
* Communications for Next Generation single chip computers

II
David R. Smith and Douglas Chan

State University of New York at Stony Brook

Abstract

It is the thesis of this report that much of what is presently
thought to require specialized VLSI functions might instead be achieved by
combinations of fast general purpose single chip computers with upgraded
communication facilities. To this end, the characteristics of applications
of this nature are first surveyed briefly and some working principles
established. In the light of these, three different chip philosophies are
explored in some detail. This study shows that some upgrading of typical
single chip I/O will definitely be necessary, but that this upgrading doe s
not have to be complex and that true multiprocessor-multibus operation
could be achieved without excessive cost.

I. Example applications

Without doubt two of the most important computer applications of the
coming decade will be graphics and speech processing. In turn, two
principal characteristics of these applications are that the computation
is often divisible into modular components and that they are often real
time driven. Hence the requirement for speed which also points in the
direction of specialized hardware. Examples may be found in the recent
literature:

1 . In a recent graphics processor (3], 12 copies of a specialized
chip in combination are proposed to process graphic images for rotation,
s k e w , t r a n s 1 a t i o n , a n d v a r i o u s k i n d s o f s c a 1 i n g a n d c 1 i p ping • The
computation rates of the component modules do not seem incompatible of the
performance expected of next generation single chip computers.

2. A recent text-to-speech system [4], employs two general purpose
processors feeding into specialized hardware. At the anticipated three
character per second input rate, the second processor communicates data in
packages of between 2 and 130 bytes every 10 milliseconds.

* .--------~~--~----~-:--~------~~----~---------------------------------------1/Supported by General Instrument Corporaton.
Visiting E.E. Dept., Stanford University, Spring 1981.

CALTECH CONFERENCE ON VLSI~ January 1981

556
David R. Smith and DougLas Chan

3. As can be seen from a recent survey, word recognition and
continuous speech recognition systems [5), while still largely in the
laboratory stage, are clearly developing along modular lines. The acoustic
analysis module of one system [6] (itself done by FFT and divi5i ble into
modules), passes samples of 14 functions every 10 milliseconds on to the
phonetic analysis module. Another [7], using software modules on a last
generation mainframe, quotes ratios of cpu time to speech time of the
following modules in series: Signal analysis 3:1, Spectral similarity 2:1,
R~gion definition 2:1, Boundary placement 1:1.

It is to be noted that the information flow in all the above systems
is unidirectional. As a contrast to this, a very common structure with the
present generation single chips is to employ them as the slaves in a
master-slaves configuration, eg. inside an intelligent terminal. In this
case the communications are sometimes bidirectional. Another recent
example of the master-slaves bidirectional configuration [8] uses special
purpose processors to scan superimposed codes of a data base index.

All these applications are of course an illustration of the fact that
parallel processing applications are emerging first in the fixed purpose
realm. Although the ones mentioned here do not constitute a large number,
they perhaps serve to give some idea of the features desirable in single
chip computers which would serve them.

II. Working principles

In this section we set down what seem to be reasonable principles to
be drawn at the outset concerning inter-chip communications in this
context and some of the reasons for prefering them.

1. The processors will manipulate data in 16 bit words. In single
chip computers the 16 bit word length will play for the next several
years, and is sufficient for digital representation of analog
quantities.

2. The number of pins per package is strictly limited and will not
greatly differ from current practice.

3. Communications will be assumed to be word parallel. This is
somewhat a choice of convenience if other considerations permit. Parallel
ports are required anyhow for uniprocessor applications, and while serial
communication could still be an added alternative, a decision to employ
parallel communication will avoid the necessity for repetitive conversions
through on-chip UART devices. In addition the use of the parallel ports
would avoid further disparity in the estimated two orders of magnitude
which separates the speed of communications internal and external to the
chip [9].

4. There is no need of an address bus. Present designs for multibus
architectures (eg . Multibus, Versabus, etc) are based on the arbitration
of complete parallel bus structures, including the address bits [eg . 10].

ARCHITECTURE SESSION

Commun ications for Next Generation Si ngl e -chip Computers

In our context however this does not seem to be necessary. This is becaus e
we expect each communication (of parameters or results) between components
of a modular computer structure to consist typically of a message or
packet incorporating a number of words. This is shown in the applications
d esc ribed above. It has also b ee n our experience with simulated
applications for the Stony Brook Multicomputer, and in fact incorporated
into the design of the k e rnel [11] . So if a whole package of words is
going to a single destination, the n an address bus would lie idle for all
data words after the first. A destination address may as well be
incorporated in the pac kage hea d e r.

5. Bus connectivity: The next question to be addressed is how many
distinct communication ports should emerge from a computer nod e . Clearly
one is sufficient (eg . Ethernet), but in the present context not very
inte resting since the c onseque nt restri c tion to a single tim e shared bus
1 im its the concurrency possible. Performance is one of our concerns. If a
condition were made tha t the processor internal bus must be available at
the pins for testing purposes, then a minimum of 2 ports per node would be
necessary, since distinct processor busses could not b e direct ly
interconnected . We will assume her e that this is not the case,- that
internal chip logic can be arranged so that the processor internal bus is
available for testing at chip reset time, but after that a mode change can
be effected which transforms that port into a buffered communication
facility .

What th e n should be the connectivity of a node? Hardware for the
X-tree project [12] is being constructed with 5 ports per node, a lthough
this would impact the pin resources of standard single chip packages . Also
it is not clear that such a port multiplicity is necessary to b e a ble to
construct th e network topologies considered in the X-tree literature, or
to accommodate the bus loading of typical applications . This is becaus e in
fact, communication ports can be configured with appropriate control
signals so as to be shared, and the apparent connectivities of modular
computer graphs seen in the literature does not have to correspond to the
number of bus ports coming off the chip. For example, the Stony Brook
Multicomputer [11], though normally drawn as a graph having up to 6 edges
to a node (fig. la), would, if implemented with single chip computers, be
most conveniently partitioned so as to use only 3 port types per node (fig
lb). Simulation studies of typical applications [13] did not show bus
loading as one of the limiting performance factors of the network.

Let us therefore consider the number of busses emerging per node. If
this is two, then the maximum communication concurrency of the whole
net-work is equal to the number of computing nodes (n), and occurs when
they are all strung out in a simple pipeline as in figure 2. This assumes
the use of buffered or DMA type ports able to operate independently of the
CPU, otherwise, with program controlled ports, the maximum would be n/2.
Of course it would also be less if some busses were incident on more than
two nodes. Suppose now that the number of busses incident on a node is
three. Then as far as the bus hardware is concerned the communication
concurrency of the network might exceed the number of computing nodes. But

CALTECH CONFERENCE ON VLSI, January 1981

5~8 David R . Smith and DougLas Chan

fiC.VI'\E l (o..)

Of 1\ l>ov~LE Tr.cc N[i\.;ORIS (S\}SS)

/------- ---

DATA Ll NKS

l> TO G

DATA L1 NK)·

/
/_- BOUNDARY OF

/

TYPICAL T 110DULE

BOUNDARY OF TYP ICAL P MODULE

r--~,. TO LOWER T

CONTROL LIN KS

FIGURE 1 (b) BOUNDAR IES OF SUSB MODULES

TO LOWER P'S

ARCHITECTURE SESSION

UUv

Communications foP Next GenePation SingZe-chip Compute Ps

unless the node computation is something rather trivial, it seems doubtful
that results would be produced at a sufficiently rapid rate to justify
anything like such a high communication/computation ratio. This supports
the argument, already almost dictated by current pin limitations, that the
number of bus ports should not exceed two. In paragraph 7 below,
directionality arguments lead us to the conclusion that the number of
ports should be exactly two.

6. Speed-up by pipeJining and synchro-parallelism: For the internal
structure of processors it is well known that there are two important
recourses for when it is desired to achieve a computation rate wich
exceeds the speed of the hardware available. 1hese have been termed
'pipeli ning' and 'synchro-parallelism ' [14]. They are illustrated in the
context of n computer chip nodes in figures 2 and 3 .

In the first, the serial combination, each computing node performs a part
of the total computation and passes the intermediate results on to the
next stage. In the simplest a rrangement , the constituent computations all
take the same amount of time, T, to complete. Then although a single
computation still takes time nT, the results of repeated computations are
streamed out at time intervals ofT. If the constituent computations take
differing amounts of time, then the technique may still be effective, but
handshaking controls must be provided to make the faster components wait,
and the overall results will be produced at intervals T corresponding

max to the slowest.

In the second, (fig 3), a parallel combination utilizes a staggered
computation with input parameters and output results sequenced on shared
busses. In the simplest form the constituent modules could be doing
identical computations, or similar computations with different internal
coefficients, and would therefore all take the same amount of timeT.
Again the effective computation rate is speeded up n times, in this case
one result being produced every T/n sees. In a more complex case, the
computations might take differing amounts of time, and then again the
computation must be controlled to make the faster ones wait. In a more
complex case still, serial networks of parallel stages might be indicated
to more closely match the speeds of the pipeline stages, or alternatively,
parallel networks of serial combinations, e tc.

The important point is that the communication facilities that we
propose should accommodate these likely to be encountered cases.

7. Bidirectional vs unidirectional ports: From the fixed applications
literature we conclude that unidirectional communications are those most
called for, although bidirectional communications are an important
minority which must be accommodated. However, the bidirectional facility
would be complex for the message based type busses we have outlined so
far. It would require some type of semaphore system to control the

CALTECH CONFERENCE ON VLSI, JanuaPy 1981

560
David R . Smith and Douglas Chan

FIGURE 2 PIPEL IN E OR SERIAL CONNECTION

FIGURE 3 SYNCHRO-PARALLEL CONNECTION

ARCHITECTURE SESSION

<c C

intended bus master and direction of data transfer and to resolve
collisions. Once established, communications on a fixed route and
direction might proceed efficiently, but the protocol to change these
would be a burden in terms of pins and time. The resulting overhead would
then lie unused on what seems to be the majority of unidirectional
communication applications. The alternative would be to employ a
unidirectional transfer protocol on each port which was as simple in
design as possible, as long as it could be shown that bidirectional
applications could still be serviced (at the cost perhaps of using one or
two extra chips). This will be the approach adopted here.

III Design for upgraded single chip computer,- version 1

A block diagram of a proposed design for an upgraded single chip
computer is shown in figure 4 and will be used as a first model.

The large shaded b]ock in the interior labelled SCC corresponds in
function to a single chip computer of existing design. This will have the
advantage that the design and debugging of this part has already been done
and hopefully, partially amortized. As shown in our diagram we assume only
that this part has two bidirectional I/O ports label.led A and B, and two
interrupt inputs TO and Tl.

The additional logic circuit functions which give the new chip its
upgraded capability are shown in the surrounding unshaded area of figure
4. Besides all the original pin connections to the SCC (which are led
straight through), there are 8 additional pins for the added functions.
This would increase the typical current 40 pin package to 48 pins which is
not regarded as excessive. The added logic has three sections. Going from
right to left in the figure, these are the arbitration control,
control-status register, and the receive selection logic. The internal I/O
ports are connected through to the external I/O ports Sand R (for send
and receive). Since the internal ports are bidirectional, while the
external ports are unidirectional, we can utilize the remaining two
functions to read and write the new control-status register with the
existing SCC instruction set as shown. The need for the new arbitration
logic arises because we are here absorbing the functions of the separate
bus arbitration chip of existing commercial designs. It will operate on a
simple daisy chain principle and be used chiefly for arbitration of the
send functions. The receive selection logic is responsible for enabling
the communciation pathway leading to this chip from the send port of
another. When the module is not so selected, its receiver port and
handshake lines should be in the high impedance state. When the READY FOR
RECEIVING flag is set, and the SELECT input is acti•,e, the receiver
selection logic will interrupt the SCC using pin T 0 , which will invoke
the attention of the communications kernel.

In two matters concerning this design we have been a little
conservative, but these could presumably be adjusted later as the
technology permits. Current instruction sets typically include a repeat
function, which as applied to I/0, could be capable of streaming words at

CALTECH CONFERENCE ON VLSI, JanuaPy 1981

::,.

::0
\)
:::t:,
"3
tt]
\)
"3
c:::
::0
tt]

V)
tt]
V)
U)
"-t
C)

~

PORT R

Tom

READY TO RECEIVE
DATA ACCEPTED -----J

TRANS. ERROR ----­
DATA VALI 0?

UPGRADED SINGLE CHIP VICROCOMPUTER

FIGURE 4

)4 :~ Tl

PORT S

ARBITRATI<f ~ IN
LOGIC ~ I ARBITRATE

I ,.; ~UT

---J-- RECEIVER- ------- --~- - ~- -SENDER-

DATA VALID
TOKEN IN

L------IIAI T FOR TOKEN

t:l
~
c
(".

~

::0 .
V)
3
~

~

~
;:$
~

t::l
C)

1::
c.t'l
t--'
~
Ol

\)
,":3"'

~
;::s

' c
t

an exceedingly rapid rate. Although we envisage multiple computer chips in
close proximity, say on the same board, we are unsure that this rapid rate
could be correctly synchronized over a variety of parallel and serial
connections, and have therefore opted for the usual double handshake by
word (see the data valid and accepted pins in figure 4). Secondly, it
would be entirely feasible even now to insert FIFO buffers between our
internal and external ports in each direction. This might be particularly
effective in combination with the new 'repeat I/O'instructions, and if the
mess age sizes were standardized . We will examine a configuration similar
to this in a later section.

Communication between modules

Figure 5 shows the format of the message block. The first word contains
an eight bit field which carries addressing information about the
receivers, followed by eight redundant check bits. This is similar to a
scheme suggested by R.B. Kieburtz for the Stony Brook Multicomputer. It is
to provide message synchronization in the absence of input and output
control pins allocated to this purpose. The kernel of the receiver will
output on its ERROR pin in the event of communication error or if it gets
out of message synchronism with its sender. On receiving this through its
TO/M interrupt input, the kernel of the sender will restart with a
message header. The second word contains source address and message length
fields. The whole message can also be protected with a longtitudinal check
with errors reported on the same pin if desired.

The most straightforward communication method supported by the above
modules is illustrated by the bus connection in figure 6.

All the modules which have their send ports connected to the bus
will have their ARBITRATION IN and OUT pins strung in a simple cyclic
chain. As sho wn an active pulse must be inserted into the chain at reset
time to start things off. The arbitration logic in each module is
responsible to check for the receipt of a pulse (token) at its input . If
the WAIT FOR TOKEN flag is set by the kernel, then the TOKEN-IN bit will
be set. Else the token will be passed on immediately by the hardware to
the next module. This will make possible the simple sequencing of the
synchro parallel connection of figure 3 (WAIT FOR TOKEN flags always set),
or in a more asynchronous situation, a rapid round robin determination of
which module is requesting service and is next in line.

On the receiving side, the select line input of each receiver is
connected from a different line of the data bus and all the DATA ACCEPTED
lines of receivers attached to this bus are connectPd together in
WIRED-AND fashion . This shown in figure 7. When quiescent, this output is
in the high impedance state. However, when a receiver is selected it
cha ng es this output to logic true or false, depending on its READY FOR
RECEIVING flag. To the sender, its DATA ACCEPTED? input will not be true
until a ll the receivers it has selected are ready. This makes possible the
following communication modes to up to eight receivers; PUBLIC BROADCAST:
all receivers in the subset designated by the sender receive the message ;

CALTECH CONFERENCE ON VLSI, January 1981

David R . Smith and Douglas Chan

I RECEIVER I.D. l CHECK BITS }
t---------ltt-----------1 HEADER

SEnDER I . D. I MESSAGE LENG TH
'------ __ l ____ ___ -1

I',ESSAGE BODY

0 - 254 WORDS

OPT IONAL LONGTITUDINAL CHECK

FIGURE 5 MESSAGE FORMAT

~TART P ULSE

~ e
c=:)

.r...

l ./

..
L / v

i
~ 1 v

.....
[-;/

BUS #1 BUS //2

L ____
ARBITRATION CHAIN FOR BUS #2

fiGURE 6 ARBITRAT ION CONN ECTIONS

ARCHITECTURE SESSION

L

1--r-!

b
r-'--

ARB I TRATION CHAIN FOR
#3 BUS

B us #3

565
ommunications foP Next CenePation Single - chip ComputePs

FIGURE 7

SE LECT AND HANDSHAKE

CONNECT! ONS

l
I

CALTECH CONFERENCE ON VLSI, JanuaPy 1981

566
David R. Smith and Douglas Chan

FIRST READY : the next receiver to be ready will receive the message. For
both of these cases the receiver selection is mediated by the header word
of the communication message block. In the FIRST READY case however only
the rightmost bit in the header would be initially set and shifted one bit
left after each timeout until either a ready receiver is found or all the
receivers have been exhausted . In the latter case the kernel would then
abort that transmission attempt and go to sleep until the next cycle of
the daisy chain token. Thus FIRST READY is just a multiple application of
the PUBLIC BROADCAST with a subset size of one.

In applications in which larger fan-outs are called for, this may be
obtained by simply connecting the chips in the form of a tree. In this way
one extra layer of 8 chips could achieve a fanout of 256 and so on. This
is the same technique commonly used in multiplexer and decoder trees.

A detailed listing of the send and receive protocol sequence is
given in appendix 1.

Multi-computer configurations .

Clearly the design we have outlined will be most efficient when used
in simple serial or parallel unidirectional structures as in figures 2, 3,
and 6. However, if bidirectional communication is desired, it can also be
achieved as shown in the completely connected mesh network of figure 8. In
this network, the receive port of each module is connected to every other
send port, and vice versa. The disavantage of the complete connection is
that a single bus and arbitration chain must encompass all modules. This
implies that only one communication at a time can occur in the network.
For increased communications concurrency a partially connected network
would be more attractive such as that shown in figure 9. Such networks are
truly multibus, with some unidirectional sections and some bidirectional.

Finally, as an important special case we draw attention to the
common master slaves connection with bidirectional information transfer.
As shown implemented with our single chip design in figure 10, this is
achieved by using extra chips. In some cases, such as a master slave
configuration with multiple slaves , it may be necessary for the slaves to
identify themselves when sending to the master. Of course this could most
easily be accomplished if the slaves had different programs in their ROMs
including their own ID's. If the slaves had identical ROM contents however
identification could still be achieved without an address bus as follows:
At reset time an initializing routine in each slave could run a counter
until the intial receipt of the arbitration token. It could then associate
an address to itself based on the value of this count, and use this
aferwards in the sender ID field of the packet headers (see figure 5).

IV. Pure Firmware Model

Here we examine whether the communication objectives set out above
could be achieved without the extra specialized on-chip hardware. For this
purpose we assume again the single chip computer with the two parallel
bidirectional ports •

.. ,,..!ON

567
Communications foP Next CenePation Single - chip Computers

v

~----------------~

F IGU RE 8 COMPLETELY CONN ECTED NCTWORK

CALTECH CONFERENCE ON VLSI , JanuaPy 1981

568

-
LL.

z

~
:r
u

co
a::
~

ARCHITECTURE SESSION

David R . Smith and Douglas Chan

Communications foP Next GenePation Single - chip ComputePB

I'\ I' I

I
~

.

SLAVE 1 a I-

BIDIRECT IONAL

SLOW BULK 1

_ _::__j

.
~r-

1'1ASTER

ll .
1 r

v
., ,. !

SLAVE lA SLAVE 2A

L ' ~

DEVICE //1 BIDIRECTIO NAL

FIGURE 10 MASTER- SLAVE CONTROLLER

sec

RAM
I
I
L

sec

RAM

RAM

sec

RN-\

FIGURE 1 I DO\·INLOAD I NG NETWORK

I S LI\VE

~

I
DEVICE

I

28
f--

#2

CAL TECH CONFERENCE ON VLSI, JanuaPy 198

570
David R . Smith and Douglas Chan

Without the dedicated hardware, communication protocols will
necessarily be more complicated. As in other multicomputer environments we
have to consider the questions of communication bus arbitration, module
address selection, and the direction of information flow. Figure 12 shows
our proposed utilizat'ion of the two ports to perform multicomputer
communications . In the basic single chip computer, both ports A and B are
bidirectional. For our present purpose port A would be the communication
data bus and port B would be the control bus . Arbitration would be done in
a fixed priority approach and only one-to-one module communication would
be allowed.

Communications between modules would proceed in three phases. During
the first phase, arbitration of the communication bus would be performed.
After a new bus master is assigned, the second phase is entered and the
master would select the module with which it wanted to communicate. In the
third phase, communications between the master and the selected module
would be performed word by word on a handshaking basis . All modules would
participate in the first and second phase whereas only the master and the
selected module will be involved in the third phase. Detailed description
of the protocol can be found in appendix 2.

The size of the communications control prog r am will be about 300
words. This estimation is based on the simple instructions used in section
V to estimate the size of the arbitration program for the dedicated
arbitrator . The timing of the arbitration process depends on the number of
modules present. For example , if there were four modules on the bus, the
time needed for the arbitration would be around 30 microseconds , assuming
expected cycle times of next generation single chips. The address
selection process would take at least another 3 microseconds . The timing
of the message transmission would depend on the size of the message
packet.

The advantage of this protocol is that no hardware modification is
necessary. However, since only one communication bus can be available, no
pipeline or synchro-parallel configurations can be achieved . Also the
arbitration and address selection processes described above would have to
be emulated by software and all modules would have to participate whether
they were parties to that communication or not. This would result in a
large amount of time used up in communications control. These must be
accounted severe restrictions of the pure firmware case and an indication
for hardware support of some kind.

V. Upgraded Chip with FIFO and Dedicated Arbitration .

In this section we will examine a third case in which it is assumed
that the technology would permit the inclusion on the chip of a first-in
first-out buffer store to assist in the communication of the message
packet. Since arbitration could now take place at the packet rather than
the word level, the timing requirements are slowed to the point where they
could be handled by a software rather than a hardware process, - in fact
on an identical chip, specialized by its ROM program for arbitration
control.

ARCHITECTURE SESSION

Communications for Next Generation Sing~e- chip Computers

V')

:::>
co
z
0
1-
c(
u
z
:::>
::::::
L
0
u

t

~
.--
...__ -

r

ex:
.. 1-

0:::
0
a...

ex:
1-
0:::
0
c..

ex:
t-
0:::
0
a...

w
_J

:::>
Cl
0
L

>-
1-......
0:::
0
0:::
a...

1-
V')
w
3:
0
_J

w
_J

:::>
Cl
0
L

>-
1--0:::
0
0:::
a...

1-
V')
w
:c
(!)
:c

l
1-
z

co
1-
0:::
0
c..

l
t- ex: z co

co
Q.J

0
co co
1-
0:::
0
a... >

Cl

ex:
Cl

w
1-

I.L.
1-

l
1-
z

co
1-
0:::
0
a...

-r-

>
Ll')

.J
uJ
C>
':>
[

w
c::
c
s
1:
~

u..

lu
oc
~

c...

Q)
s...
::s
0'1

•

CALTECH CONFERENCE ON VLSI , January 1981

David R. Smith and Douglas Chan

Otherwise we make similar assumptions as before, namely word
parallel 16 bit communications and a 48 pin package limitation. Again one
of the interrupt inputs will have to be multifunctional and du r ing
multicomputer mode serve as a TRANSMISSION-END signal input .

Figure 13 is the block diagram of the upgraded single chip
microcomputer with FIFO. The module has two ports, namely port S for
message transmitting and port R for message receiving. Both ports can be
changed to bidirectional ports by software. The block labelled 'SCC ' at
the upper right corner is a dual port computer . To the left of SCC is the
address recognizer hardware which is used to perform address comparison .
If an address match occurs, it interrupts the SCC to input the message in
the FIFO. If the device is not selected, the FIFO will be cleared for a
new message packet. At the lower right corner is the receiver control
hardware whose function is to control the address recognizer hardware and
FIFO, and to generate receiver handshaking signals. In the lower center is
the receiver FIFO and its control register. The structure of the FIFO is
similar to current industry FIFO's. The input data is written into the
storage array in a location specified by the Write Address Counter (WAC).
The current output word is automatically available at the output register.
After the current word of data is used, the next output word is read from
the storage array at the location specified by the Read Address Counter
(RAC). To the right of the FIFO hardware is the control register for the
upgraded hardware. Part of the control register's contents is used as
handshaking signals for transmitting messages.

Only one FIFO is placed on the receiver side in this scheme with the
message words separately handshaken across under direct program control of
the transmitter. This of course would be slower than if the message packet
were transmitted between two FIFO's under direct hardware mediation.
However we are using the FIFO here pricipally to simplify the control and
we felt that two intermediary FIFO's would be more complex . The single
FIFO scheme would still be faster than our first case because of the
simpler synchronism -both of the communicating software processes do not
have to attend at the same time. The receiver module can therefore poll
the FIFO later and bring in the message with the fast repeat-I/O
instruction. Thus in an N processor multibus system a bus concurrency
close toN might be approached instead of being limited to N/2 as before.
The detailed communications protocol for this case is given in Appendix 3.

Use of upgraded microcomputer as bus arbitrator

As we proposed in previous sections, our message communications
scheme will be in packet format. There is a considerable amount of time
lap between different packets being transmitted, which implies that the
arbitration process can be achieved by software instead of dedicated
hardware. In this section, we are going to examine the possibilities of
using the same upgraded single chip computer as our communication bus
arbitrator. Firstly, different arbitration schemes are discussed.
Secondly, the size and speed of the arbitration program will be studied .

RCHITECTURE SESSION

(")
:1::.
t-1
"3
t>j
(")
::X::

(")
C)
;;::
'"oj
t>j
::0
t>j
;;::
(")
t>j

C)
;;::

..;::
t-1
en
'-i

"'
~
~
;:$
!::
~
~
~

1--.l

<o
~
1--.l

READ P
SYSTEI~
SELECT

ULSE/
RESE

l/~
/

FigurE' 13 UPGRADED SINGLE CHIP MICROCOMPUTER WITH FIFO

s c c
1 INTER NAL BUS

~~ ~~
ADDRESS RE CGON I ZE R

jUt. V 1-\UU~

L~
'\i r

AUUi< Kt:.C CONIKUL~

~roUT PUT REGISTE_!l
RECE-
IVER ~

CNTL w
LOGIC A

c
~

T
RESU

J

r

"'~'\~ATA ACCEPTED
'\'£RROR IN TRANS.

TRANS. END

J ~

~ R
63 X 16 A

c

L~ J
~

1 ORT R

CONTROL
REGISTER v
1 2 ~ 's 6~7 8

I
I I ~J '

r J. L_ -
NORt~!I.L
MODE

J

.. ..

J
~

ORT S

ODE
TOP RECEIVING
UFFER FULL
RROR IN TRANS.

DJI.TA ACCEPTED
DATA VALID

US GRANT
US REQUEST

(")
0
::J
::J
l':::
;:$
~.

~

~
~
~.

0
;:$
0)

'--;,
0
~

;;::
~

H
~

<;)
(\)

;:$
~

~
~
~
~.

0
~

en
~.

~
(!)
~

~
I
()
;:s-o
~.

'1;j

(")
0
::J

'1;j
l':::
~

~
~
G)

(J1

-.l

"'

574
David R. Smith and DougLas Chan

For use as an arbitrator, our upgraded computer will be operated
in normal mode, which means it will have two bidirectional ports: A and B.
Port A will be used as bus request port and port B will be used as bus
granted port. Figure 14 shows how local communication buses are connected
to the arbitrators. More than one arbitrator can be connected together
hierarchically to produce a larger arbitration system. Figure 15 shows a
possible arbitration system.

Two different arbitration schemes could be implemented: Fixed
Priority and Round-Robin systems. Pin 16 of the arbitrator bus request's
port could be used to indicate which mode has been set, and pin 16 of the
arbitrator bus grant's port used to indicate that the current bus master
has released the bus. The fixed priority mode is entered when pin 16 of
the arbitrator bus request's port is set to logic high. In this mode, pin
1 will have the highest priority and pin 15 will have the lowest priority.
When the current bus master releases the bus by lowering its bus request
line, arbitration phase is entered and the request with highest priority
will be honored. Round-robin mode is entered when pin 16 of the
arbitrator's receiver is set to logic low. In this mode, all pins will
have the same priority and requests will be honored in a circular
fashion. By combining the two arbitration schemes we could implement a
hierarchy arbitration system as in figure 15. Modules having the same
priority level are connected to the same arbitrator which implements the
Round-robin scheme, where the arbitrators themselves are connected to a
master arbitrator which implements the fixed priority scheme . With this
hierarchical parallel structure, we could connect any number of modules
together and still have minimal delay time. Both round-robin and fixed
priority algorithms have the same structure. While a current bus master is
using the bus, the bus arbitrator will continuously perform next bus
arbitration. As soon as the current master has finished, a new bus master
can be assigned. With this approach, delay time can be minimized.

Arbitration program outlines can be found in appendix 4. The
sizes of both programs are about the same. Since we have to incorporate
both programs into the program memory, their total size is less than 200
words. Worst case arbitration delay time is when there is no
pre-arbitration done, in this case the arbitration delay time will be less
than 30 microseconds. When there is pre-arbitration done, which is the
average or best case, the timing will be less than 4 microseconds. With
this arbitration delay time, we concluded that the size of the FIFO should
be efficiently be 64 words, since the time the transmitter takes to
transmit one packet should be greater than one arbitration period.

VI. Conclusion and Discussion.

Of the three schemes examined we believe the pure firmware model
has been shown to have inefficiencies which might cancel out the
advantages of the multiprocessor operation in the type of applications
envisaged. If technology and marketing considerations would permit the 48
pin package then the inclusion of upgraded communication hardware would
result in a more efficient system, and if a FIFO could be included, still

ARCHITECTURE SESSION

\)
:t..
t'"1
'-3
C>j
\)
::t::
\)
C)

~
"';l
C>j

:::0
C>j
~
\)
C>j

C)

~

~
t'"1
C!)

~
lo

~
~
~
10::
~
"'$
~

......
~
Q:)
......

MODULE
IN BUS A
TO TRANS.

Hoourr
IN BUS A
TO TRANS.

II.ODULE
IN BUS A
TO TRANS.

ARBITOR FOR ARBITOR CAN BE IN
ARBITOR FOR PRIORITY MODE OR LOCAL BUS A LOCAL BUS B ROUND ROBIN MODE

R T R T

~

TI f--lr·IODULE .,..___

J\

ti= REC FROM r.

BUS A AND
TRANS TO l{\

~BUS B
/

~

~l! •I- _l -· - ' i

1-
~ IIODULE

REC FROM f--r--
f- BUS A AND i TRANS TO ..

lsus B ...
) W ..

_i

LOCAL BUS B

-{ I I nrtd lliiC II

L Fi,Rure 14. -OCAL BUS CON~ECTIO~ SCHEME

.. t10DULE •
REC FROM

-~ BUS B

"' _/ ..

MODULE
-~ REC FROM

• BUS B

...
)

v

r
c

$:
~

('

(;

s::
('

t'
c:
~
0:

.._
c:

<
(I;

!­
('

(
(I;

~
(I;

s::
('

('

c: ...

c.
(' ...
~
('

(I;

I
(; ...
('

l::

' c:
;::

'\::
$:
('

(I; ...
~

;):,.

=tJ
~
::t;
~
'"i
~
~
'"i
c::
=tJ
~

(/)
~
(/)
(/)
~
C)

<::

MODULE
WITH
PRIORITY
1

t·10DULE
\-liTH
PRIORITY
1

1·10DULE
1-/ITH
PRIORITY
2

I·:ODULE
\·liTH
PRIORITY
2

MASTER PRIORITY MODE
ARBITOR PIN 1 HAS HIGHEST

PRIORITY, PIN 15 HAS
R T LOWEST PRIORI TY ... T1 PIN 16 IS USED TO

PRIORITY 1 PRIORITY 2
ARB !TOR ARB !TOR THESE ARBI

R T R T

1
--:

I
I

LUMI'IUi'H 1...11 1 UN tsu::,

.....

./

p,~e IS

HI~ARCHY ARBITRATION SYSTEM

DICATE END OF TRANS.

RS ARE IN ROUND ROBIN MODE

iORITY 2 END OF TRANS.
IORITY 1 END OF TRANS.

0 RECEIVERS' PORTS

~
j:l
I::
~­
R.

::0 .
(/)
:3
~­
~
;l"'

j:l
~
R.

\:I
<)

1:::
~
('-4

j:l
0)

~
.3"
j:l
~

(J
...;:

a

better. Realistically, these options may not be attractive in the first
generation of 16 bit single chip computers since the communications
software of two to three hundred words would be an appreciable fraction of
the whole program memory space available. However, with each year that
passes after that, with a doubling of program space, these schemes should
become increasingly attractive.

In conclusion, what we have advocated here for the single chip
computer can be viewed as a low cost alternative to the more expensive
multiprocessor-multibus architectures which have been proposed for the
current family of multichip microcomputers. It has also been oriented
towards the area of fixed rather than general purpose applications. In
this context, the development of a firmware kernel in ROM to remove most
of the burdens of the communications from the users is clearly of crucial
importance. Such a kernel would clearly have differences with kernels now
being developed for large experimental general purpose multicomputers
(such as [11]), since it should be oriented towards simplicity and speed
efficiency.

An important property of the proposed chips is the flexibility of
use and low cost. In this way the idea of employing extra chips of the
same kind in a design can be easily entertained. Examples of this have
been seen here for increasing communications fanout and for adding
bidirectionality to the links. This perhaps may point the way to the use
of such chips as this as general purpose system building blocks, much as
discrete logic gates and programmed logic arrays have been used in
previous technologies.

Looking slightly further ahead, we can see that one of the factors
raising the costs of these multicomputer applications would be the
different application software modules which would have to be burnt into
chips in different parts of the network (parallel arms, serial arms). In
other words we would like our standardized modules to be exactly alike in
all respects. Eventually this might be achieved as shown in figure 11,
using a system of downloading the applications software at power-on time
into modules based on RAM rather than ROM. Here is where a hierarchical
memory might be indicated in each chip with a large dense dynamic RAM
backing up a small static RAM cache. This would also add new functions to
the kernel, with perhaps a bootstrap version in each module bringing in
the applications software and then the running kernel.

CALTECH CONFERENCE ON VLS I , Janua ry 1981

JIO

David R. Smith and DougLas Chan

References

[1) Moore, G.E., "Are we ready for VLSI?", Proc. Caltech. Conference on
Very Large Scale Integration, Jan. 1979, pp 3-14 .

[2) Mead c., & L. Conway, Introduction to VLSI systems,
Addison-Wesley, 1980.

[3) C 1 ark J., "VLSI geometry processor for graphics", Computer J., July
1980, pp 59-68 .

[4) Caldwell J., "Real time text to speech using c ustom VLSI and
standard micro-computers, proc. Spring Compcon 80, p43.

[5) Dixon L.R., & T.B. Martin, Automatic speech and speaker
recognition, IEEE press, 1979.

[6] Medress M.F. et al, "A system for the recognition of spoken
connected word sequences, ibid, pp 238-247.

[7] Dixon L.R. & H.F. Sive rman, "The 1976 acoustic processor MAP", IEEE
Trans ASSP-25, (Oct 77), pp 367-379.

[8) Roberts C. s., "An associative/parallel processor for partial match
retrieval using superimposed codes", Proc. 7th Symp. Computer
Architecture, (April 1980), pp 218-227.

[9] Patterson D.A., & C.H. Sequin , "Design considerations for sin«jle
c hip computers of the future", IEEE Trans Vol. C-29:2 (Feb 1980),
pp 108-116.

[10] 8086 family user manual, Intel Corp, 1980.

[11] Sadayappan P. et al, "An operating system kernel for a hierarchical
computer", Proc. Fall Compcon 80, Sept 23-25 1980.

[12] Sequin C.H., "message switching circuits for multimicrocomputers",
Proc. Spring Compcon 80, pp 328-334.

[13) Ha r r i s , J . A • , & D • R • S m i t h , " S i m u 1 a t i o n ex p e r i me n t s o f a
hiera c hi ca l multicomputer" Proc. 6th Symp. Computer Architecture,
1979, pp

[14] Chen T.C. "Ov e rlap and pipeline processing", Ch. 9 in
Introduction to Computer Architecture, H.A. Stone, ed ., SRA
assocs. , 2nd ed., 1980.

ARCHITECTURE SESSION

APPENDIX 1

Transmission:

** The Kernel sets up the message block in its RAM. It will clear the
READY-FOR-RECEIVING flag in the selection logic and set the WAIT-FOR-TOKEN
flag in the daisy chain logi c. It then continues processing and
periodically polls the TOKEN-IN bit in the I/0 register . When the daisy
chain logic receives the token, it will check its WAIT-FOR-TOKEN flag. If
the flag is set, it will set the TOKEN-IN bit in the I/0 register and
c lear the WAIT-FOR-TOKEN flag.

** When kernel knows the TOKEN-IN bit is set, it will change its
transmitter port and handshaking lines from high impedence to logic false.
RTLl interrupt line is also disabled. Afterthis, kernel will load latch A
with first word of message and set the DATA-VALID out bit to true. (First
word of message block is the bit pattern specifying which subset of
receiver is chosen)

** The kernel will initiate a timer at this instance. If the timer has
run out before the DATA-ACCEPTED IN bit is set, it will abort the message
transfer and reset the appropriate bits and flags.

** When the kernel sees its DATA-ACCEPTED IN bit is set, it will
acknowledge by clearing its DATA-VALID OUT bit.

** When the kernel see its DATA-ACCEPTED IN bit is cleared , it will
send the rest of the message by handshaking. When transmitting the second
word of the message, it will check the TRANSMISSION-ERROR IN bit. If the
bit is set, it will clear the DATA-VALID OUT bit and check the last word
transferred. As soon as the TRANSMISSION-ERROR IN bit is cleared by the
receiver, the kernel will set the DATA-VALID OUT bit and re-transmit that
word to the receiver. The kernel has contra] over number of retries and it
will abort the message transfer if that limit has reached.

** When the kernel is finished with the transmission, it will clear the
TOKEN-IN bit and set the READY-FOR-RECEIVING flag in the selection logic .
After this, it will put its transmitter port and handshaking lines back to
high impedence state.

** Upon the TOKEN-IN bit is cleared, the daisy chain logic will pass
the token to the next module down the chain.

Receiving:

** The SELECT input line of the receiver will be in high impedence
state during receiving and will be in logic false state when waiting for
input.

** When the receiver's SELECT input is on, it will check the
READY-FOR-RECEIVING flag. If the flag is set, it will change the
DATA-ACCEPTED OUT line from high impedence to logic true. In addition, the

CALTECH CONFERENCE ON VLSI, JanuaPy 1981

David R. Smith and Douglas Chan

receiver's port and handshaking lines are all changed to low impedence. If
the READY-FOR-RECEIVING flag is not set, kernel will set the DATA-ACCEPTED
OUT line from high impedence to logic false and DATA-VALID IN line to low
impedence. When the DATA-VALID IN bit is reset, the kernel will reset the
receiver's handshaking line back to high impedence state.

** The kernel will receive the rest of the message by handshaking with
the transmitter. It will check for transmission error in the second word
of the message. If error did occur, it will set the TRANSMISSION-ERROR OUT
bit to true and discard that word. As soon as the DATA-VALID IN bit is
cleared, it will clear the TRANSMISSION-ERROR OUT bit and waits for
re-transmission of that word. When predetermined number of retries is
over, kernel will abort the message receiving and reset its bits and
flags.

** When the message receipt is completed, the kernel will put its
receiver port and handshaking lines back to high impedence state. The
SELECT input is r eset to logic false.

*

*

*

*

*

*

APPENDIX 2 - Pure Firmware Model.

When the system first boots up, all modules' BB, BA, DV, DA, TE and
TF lines are not asserted. Except for the highest priority module's
BI line is connected to SV and the lowest priority module's BO line
is connected to g round, all other modules' BI and BO lines are not
asserted.

When a module wants to gain access to the bus, first it has to check
the BB (Bus Busy) line. If it is asserted, it has to wait for the
c urrent master to finish. If BB is not asserted, the module will
assert its BA line. Since the BA line is connected to all modules'
Tl interrupt line (including itself), all modules will enter an
interrupt service routine which then begin the arbitration process.

The module which asserted the BA line will reset it.

All modules will initiate a count down timer for maximum arbitration
process duration. When the count times out and the BB line hasn't
been asserted , arbitration process will be terminated and all
modules will resume their previous processes.

Meanwhile all modules sample their BI (Bus arbitration In) input.
When this signal is asserted for a module which did not request the
bus, then that module will assert its BO (Bus arbitration Out) and
wait for BB assertion or timer run out to occur. If this module was
not the one which requested the bus, it will assert its BB line .

As soon as the module gains control to the bus, it becomes the
current bus master. It then puts a d evice address word on to the
data bus and asserts its DV (Data Valid) line. When its DA (Data
Accepted) line is asserted by the selected module, the master will

ARCHITECTURE SESSION

Communications for Next Generation Singl e -chip Computers 581

*

*

*

*

reset its DV line and returns to its calling process to perform
the message communication. If the DA line doesn't assert when
the timer run out occurs, then the arbitration process will be
terminated and all modules will resume their previous processes.

When a module ' s BB line is asserted by a new master, it will
wait for the device address word to determine whether it is
being selected . If a module is selected, it will assert its DA
line. When the master resets its DV line, the selected module
will enter a communication routine. Other modules will terminate
the arbitration process and resume their previous processes.

The DA lines are wired OR together, so only one to one module
communication is allowed.

Communication will be performed on word by word handshaking
basis. At any time if the receiver module asserts the TE (Trans.
Error) line, master will try to retransmit the last word for a
predefined number of times. If still fail, communication will be
aborted.

When the communication is finished, the master asserts the TF
(Trans. Finished) line and waits for DA line assertion. When its
DA is asserted, it will reset its TF and BB line and the
communication is concluded.

APPENDIX 3 - Upgraded Chip with FIFO

The modules all have distinct coded addresses. Modules will generate their
addresses during the system boot up phase. When the system first boots up,
all modules on a local bus will assert their BR (Bus Request) lines.
Depending on the arbitration scheme used by the local arbitrator,
individual modules will be granted the bus in succession and can generate
their addresses based on the time elapsed .

Communications will proceed in two phases. During the first phase or bus
arbitration phase, a module which wants to use the bus asserts its BR line
and waits for its BG (Bus Grant) line to be asserted by the arbitrator.
Once the BG line is asserted, the selected module will enter phase two
which is the communication phase.

Since receiving is performed by hardware and buffered by a FIFO, we expect
all the modules on the receiving side are ready to receive when the
transmitter is ready to transmit the message packet. However, if the
Receiving Buffer Full bit of the control register is set, the receiver
module has to wait till it is clear before it can accept any more message.
Handshaking signals are used throughout the communications, and the
receivers ' DA (Data Accepted) lines are wired AND together so as to ensure
all the receivers are ready.

When the module gains access to the local communication bus, it will send

CALTECH CONFERENCE ON VLSI, January 1981

David R . Smith and DougLas Chan

out the message packet with a packet header word containing the coded
destination address to the receiver modules. Depending on the coded
address, message packets can be directed to an individual module or
broadcasts to all of them.

At any time, if the transmitter's Error-in-Transmission line is asserted
by one of its receiver modules, the transmitter will retransmit th e last
word up to a predefined number of times. If the error condition persists
the transmitter will abort the transmission.

When the transmission is finished, the transmitter module will reset its
BR line . The arbitrator will then reset the corresponding BG line and
asserts its Transmission End line to all the receiving modules.

Once the Transmission End line is asserted by the arbitrator, all the
receiving modules will check the packet header word and determine whether
the message is intended for them. If the message is intended for a
particular module its control logic will interrupt the sec in order to
ship the message from the FIFO to the SCC ' s memory. If the message is not
directed to the receiver, the receiver control logic will clear the FIFO
for another new message packet.

When a transmitter module is not the current bus master, its transmitter 's
handshaking lines are in high impedence state.

APPENDIX 4 - Arbitration programs

Listing of the arbitration program:

I* initialization phase, determine which arbitration scheme to use *I

F-begin: Load save-req with 000 ... 000
Load temp with request word
temp<- temp logical AND 100 . .. 000
temp = 0?
(false) jump to £-wait-loop
(true) jump to r-wait loop

I* e nter Fixed Priority mode, look for bus request *I

£-wait-loop:

ARrHITECTURE SESSION

load req-wd with request word
req-wd <- req-wd logical AND 011 . .. 111
req-wd = 0?
(false) jump to f-arb-1
(true) jump to £-wait-loop

Co mmun ications f oP Next GenePation SingLe - chip Computers

I* determine who ~~ts the bus *I

f-arb-1 :

f-arb-lloop:

load arb-end with 010 .. • 000
load arb-curl with 100 ... 000
left circular shift arb-curl 1 bit
temp <- arb-curl logical AND req-wd
temp = 0?
(false) jump to f-grant-bus
(true) arb-end = arb-curl?
(false) jump to f-arb-lloop
(true) jump to f-wait-loop

I* grant the bus to the highest priority requesting module *I

£-grant-bus: load bus grant word with arb-curl
load bus granted with 1
load save-req with 000 . . . 000

I* now start doing pre-arbitration while the bus is busy *I

f-arb-2:

f-continuel:

load req - wd-2 with request word
req-wd- 2 <- req-wd-2 XOR arb-curl
req-wd-2 <- req-wd-2 logical AND 011 •.• 111
req-wd-2 c 0?
(false) jump to f-continuel
(true) jump to f-arb-2
load arb-end with 100 . •. 000
load arb-cur2 with 100 ... 000

I* determine whether the bus is being used *I

f-test: bus-granted = 1?
(false) jump to f-arb-2loop
(true) jump to f-poll

I* check to see whether the current master has finished if finished , and
there is an outstanding bus request, grant the bus. Otherwise continue
pre-arbitration process *I

f-poll: load temp with request word
temp <- temp logical AND arb-curl
temp = 0?
(false) jump to f-arb-2loop
(true) load bus grant word with 100 ... 000
load bus grant word with 000 . .. 000
load arb-curl with 000 . . . 000
load bus-granted with 0
save-req <> 0?
(false) jump to f-arb-2loop
(true) load arb-curl with save-req
jump to £-grant-bus

CALTECH CONFERENCE ON VLSI, JanuaPy 1981

David R. Smith and DougLas Chan

I* perform pre-arbitration *I

f-arb-2loop:

f-continue2:

left circular shift arb-cur2 1 bit
arb-end = arb-cur2?
(false) jump to f-continue2
(true) jump to f-arb-2
temp <- arb-cur2 logical AND req-wd-2
temp = 0?
(false) jump to f-set-or
(true) jump to f-test

I* save the request from pre-arbitration process *I

f-set-or: load save-req with arb-cur2
bus-granted <> 1?
(false) jump to f-arb-2
(true) jump to f-grant-bus

I* enter Round-Robin mode, look for bus request *I

r-wait-loop: load req-wd with request word
req-wd <- req-wd logical AND 011 ... 111
req-wd = 0?
(false) jump to r-arb-1
(lrue) jump to r-wait-loop

I* determine who should the bus be granted *I

r-arb-1:

r-arb-lloop:

load arb-end with 010 ... 000
load arb-curl with 100 ... 000
left circular shift arb-curl 1 bit
temp <- arb-curl logical AND req-wd
temp = 0?
(false) jump to r-grant-bus
(true) arb-end = arb-curl?
(false) jump to r-arb-lloop
(true) jump to r-wait-loop

I* grant the bus to the highest priority requesting module *I

r-grant-bus: load bus grant word with arb-curl
load bus granted with 1
load save-req with 000 ... 000

I* now starl doing pre-arbitration while the bus is busy *I

r-arb-2:

ARCHITECTURE SESSIO N

load req-wd-2 with request word
req-wd-2 <- req-wd-2 XOR arb-curl
req-wd-2 <- req-wd-2 logical AND 011 ... 111
req-wd-2 = 0?
(false) jump to r-continuel
(true) Jump to r-arb-2

I* determine where to start pre-arbitration *I

r-continuel:

r-new:

bus-granted= 1?
(false) jump to r-new
(true) load arb-cur2 with arb- curl
jump to r-poll

load arb-end with 100 .. . 000
load arb-cur2 with 100 ... 000
jump to r-arb-2loop

I* check to see whether the current master has finished if finished, and
there is an outstanding bus request, grant the bus. Otherwise continue
pre-arbitration process *I

r-poll: load temp with request word
temp <- temp logical AND arb-curl
temp = 0?
(false) jump to r-arb-2loop
(true) load bus grant word with 100 .•. 000
load bus grant word with 000 ... 000
load arb-curl with 000 ••. 000
load bus-granted with 0
save-req <> 0?
(false) jump to r-arb-2loop
(true) load arb-curl with save-req
jump to r-grant-bus

I* perform pre-arbitration *I

r-arb-2loop:

r-continue2:

left circular shift arb-cur2 1 bit
arb-end = arb-cur2?
(false) jump to r-continue2
(true) jump to r-arb-2
temp <- arb-cur2 logical AND req-wd-2
temp = 0?
(false) jump to r-set-or
(true) jump to r-test

I* save the request from pre-arbitration process *I

r-set-or: load save-req with arb-cur2
bus-granted <> 1?
(false) jump to r-arb-2
(true) jump to r-grant-bus

Note: save-req, temp, req-wd, arb-end, arb-curl, bus-granted, req-wd-2,
arb-cur2 can be registers or memory words.

CALTECH CONFERENCE ON VLSI, JanuaPy 1981

