203

SLIM: A Language for Microcode Description
and Simulation in VLSI'

John Hennessy
Computer Systems Laboratory
Stanford University

Abstract

SLIM (Stanford Language for Implementing Microcode) is a programming language based system for
specifying an*' simulating microcede in a VLSI chip. The language is oriented towards PLA
implementations of microcoded machines using either a microprogram counter or a finite state
machine. The system supports simulation of the microcode and will drive a PLA layout program to
automatically create the PLA.

1 Introduction

VL.SI chip design has rapidly become an area of great importance and interest. Mead and Conway
[6] have proposed a design methodoloyy for VLS| systems that has been widely employed. Their
design methodology proposes a chip organization using: finite state control implemented with a PLA,
functional units controlled by the PLA, and a set of data paths. This design methodolcgy has been
used in a number of large chip designs [5,1,2]. The finite state control can be thought of as
microcode. Within a design that follows the microcoded control approach, designing and debugging
the microcode appears to constitute a significant portion of the work involved in the design process
[1,2]. This paper describes a language for synthesizing the control units of a chip from a high level

language description.

Presenlly few tools exist to assist the user in designing and debugging the microcoded control.
Programs to construct PLA's from boolean equation are widespread; however, the difficult
component of control unit design is to specify and debug the microcode. This difliculty arises in

generating the boolean equations that describe the finite state machine control. Transforming these

"This research was partially supported by the Jein Services Electronics Program under contract # DAAG29-79-C-0047 and
the Defense Advanced Research Projects Agency under contract # NDA903-79-C-0680.

CALTECH CONFERENCE ON VLSI, January 1981

254
John L. Hennessy

to a PLA layout is tedious and error-prone but mechanically straightforward. Some work has been
done on describing PLA’s at a higher level [7] and on synthesizing PLA descriptions from low level
state machine descriptions in DDL [4].

SLIM (Stanford Language for Implementing Microcode) is a programming language useful for the
design of a microcoded system that will employ PLA implementation techniques. Unlike earlier work
SLIM is functionally oriented. Control in SLIM is based on a finite state machine, but SLIM deals with
objects that can be more abstract than the actual PLA inputs and outputs. The SLIM system supports
both microcode simulation and automatic synthesis of the microcoded control function either in ROM

or PLA. SLIM will also accommodate either finite state machine control or control with a program
counter.

Correct microprograms are both tedious and dirricult to write for several reasons. First, the
programming language is extremely low level. Typically, the designer must deal with a primitive finite
state machine without the benefit of a human-engineered interface. Secondly, many of the
microprograms are large. This leads to a relatively complex program without a great deal of structure;
this is especially true if the finite state machine is coded as boolean equations. A boolean equation

approach makes it difficult to consider aitering the microcode, even during the debugging process.

Another major difficulty is the significant level of detail that must be expressed. This leads to one of
two pitfalls: either the microcode description is very low level and cluttered with details, which makes
it impossible to understand; or the designer uses an ad hoc higher level description of the microcode.
An ad hoc description is unsuitable because the translation to the low level microcode must be done
by hand, and the description tends to be too informal and vague. Without a higher level standard
representation, microcode programs are difficult to write correctly and virtually impossible to

understand. The SLIM system is also able to translate the boolean equation representation of the
PLA into a layout.
We can sumimarize the goals of SLIM as

e 2 symbolic higher level language suitable for designing and documenting the micro-
program and oriented towards implementation with PLA technology,

» simulation tools to debug the microcode,

e automatic layout of the PLA based on the microcode.

OAMDIITERER A TDED NDEOTAN ODOCOTANY

255
SLIM: A Language for Microcode Deseription and Simulation in VLSI

The SLIM design goals spawn a set of language and system requirements. The microcode
simulation requirement implies the ability to describe the subsystems that interact with the
microcontroller; we will refer to these subsystems as the environment. Describing lhe environment
can be easily done in a conventional programming language, if the interaction with the microcode
occurs in a restricted and well defined manner. Separating the micromachine description from the
environment description has two benefits. The separation increases comprehensibility of the
micromachine structure. A specialized language is also more appropriate for the microprogram

design; without the separation the translation process is difficult or impossible.

The environment of the finite state micromachine can be described in a conventional programming
language. The environment consists of data structures and variables which can be used to simulate
the structure of the subsystems. The environment/controller interface is based on a set of functions
and procedures. The functions, which must be type boolean, correspond to the inputs to the
microcode machine, while the procedures correspond to outputs. We have chosen Pascal to
represent the environment. The Pascal data structures provide additional support in describing the
functional components. The wide variety of data types coupled with strong type checking also
provides support for checking the microcode and making design restrictions explicit in the SLIM
program.

Since the end product of SLIM program is a finite state machine implemented with PLA techniques,
a SLIM program must incorporate details about the implementation. This specification should
include: mappings between functions and procedures in the environment, actual PLA inputs and
outputs, and timing specifications that force outputs to occur earlier or later than they occur in the
program. Including these details separately allows a more functional orientation in the microcode
description. Lastly, details concerning the actual PLA layout are needed, e.g. the number of PLA's

and the positioning on the PLA of each signal.

2 Specifying the microcode

A SLIM program consists of a finite state machine. Each state in the SLLIM program contains a
series of conditional actions that may cause one or more outputs to be high, or may specify the next
state. The next stale may be specified by default or explicitly. The outputs associated with a given
state are conditional on a set of product terms only. Although arbitrary boolean expressions could be
used, SLIM does not because it requires a significant amount of processing to transform the

expressions to a PLA oriented sum of products form. In this process the number of product terms

CALTECH CONFERENCE ON VLSI, January 1981

256
John L. Hemnessy

added to the PLA may be substantial (up to 2" terms for an expression of length n). The property that
— the number of product terms in the PLA is approximately equal to the number of preconditions for
the outputs in a SLIM program - has been useful in estimating the PLA size.

There are two major schemes for implementing the state component of a finite state machine. A
standard finite state implementation uses a fixed state assignment and includes an encoding of the
nexi-state function in the PLA. An alternative implementation uses a microprogram counter that is
incremented under external control. Each approach has benefits that depend on the the micro-
program being implemented. The tradeofts and the advantages of the two different VLSI control
implementations are discussed in [3]. SLIM supports both control implementations, provides default
next states for program counter implementations, and will support subroutines with call and return in

either case.

A SLIM microprogram consists of a set of states listed sequentially. Each state may optionally have

a label, which denotes the state name. The specification of the first state is preceded by a set of
snecifications for outputs which are state independent. Figure 1 shows the format of a the state
machine specitication.

fsm

state-specification (for state indepenclent outputs)

state-name (optional) : [state-specilication]

state-name (optional) : [state-specification] .

Figure 1: Specifying the state machine

A state specification is a list whose elements are either unconditional actions or cenditional
commands. A conditional command consists of a condition and a list of actions. A condition consists
of a list of one or more product terms that are joined with or, and a product term is a series of
predicates joined with and. A predicate must be a call to a function in the environment; predicates
correspond to one or more PLA inputs. The interpretation of the command is: if the entire condition
evaiuates to true, then the aclions should be executed. If there are no predicates, the condition is
assumed to be true and the action is always executed in that state. The form of a state specification is

given in Figure 2.

it py and and p, or qq..... or q,=> action

Where the p; are function invocations and the qj are product terms,
1ike the first term.

Figure 2: .Stale specifications

COMPUTER-AIDED DESIGN SESSION

257
SLIM: A4 Language for Microcode Deecription and Simulation in VLST

Each state may contain a list of such specifications and the entire state is bracketed. During
simulation, state specifications are evaluated and executed sequentially, but in the actual PLA
implementation these operations will occur in parallel. Therefore, side effects between procedures

that are outputs and functions that are inputs in the same state should ba employed with great care.

2.1 Actions

There are two types of actions allowed: outputs and state change operations. A lisl of actions can
be used as a single compound action by bracketing the list. QOutputs are invocations of procedures in
the environment and correspond to PLLA outputs. The state change directives dictate the next state.
All state change direclives have effect only after the current state is completed; thus, all state
specifications with true conditions will be executed in a state. The state change directives are:

next state-name - makes state-iname the next s.ate.
call state-name - does a microcode call to the routine at state-name.

return- returns to the state sequantially following the calling state.

2.2 A short example

Figure 3 shows the finite state machine controller for the traffic light example from [6]. (The entire
example is given in the appendix.) The state independent component is for simulation purposes. The
procedures Farmlight and Highlight alter the color (which is a parameter) of the tralfic light at the
farmroad and the highway. Timeout lcoks for the timeout condition, which is either short or long as

dictated by the parameter. The function Cars corresponds to the test for a car.

Figure 3: Microcode specification for the Mead/Conway traffic controller

fsm
[getinput; timer] { state independent component }
highgrn: [highlight(green); farmlight(red); {Highway green and farmroad red}
if notcars or nottimeout(long) => next highgrn;
if cars and timeout(lony) => [starttimer; next highyel]]
highyel: [highlight(yellow); farmlight(red): {Highway yellow and farmroad red}
if nottimeout(short) => next highyel;
if timeout(short) => [starttimer; next farmgrn]]
farmgro: [highlight(red); farmlight(green): {Hlighway red and farmroad green}
if cars and nottimeout{long) => next farmgrn;
if notcars or timeout(long) => [starttimer; next farmyel]]
Farmyel: [highlight(red); farmlight(yellow): {Highway red and farmroad yellow}
if nottimeout(short) => next farmyel;
if timeout(short) => [starttimer; next highgrn]].

CALTECH CONFERENCE ON VLSI, January 1981

258
John L. Hennessy

3 Defining the Relationship to the PLA

The relationship between the microcode specification of the control program and the PLA is
defired by: declaring the input and output signals for the PLA and defining the mappings between
environment functions/procedures and input/output signals. The expressive power of this mapping
is one of the advantages of SLIM.

3.1 Defining input and output signals

PLA signals are defined by means of input and output signal declarations, which appear just before
the definition of the environment procedures. Signal declarations begin with the keyword inputs or
outputs, as appropriate. The general form of each declaration is then:

{name [(' bounds’)' 1} [' parameters "}’
The list of names are the names of input or cutput signals being declared. The optional bounds
designator indicates whether a particular signal is a cingle bit or a vector of bits. In the latter case the
ling can be treated as an integer-encoded number; the order of the bounds (low to high or high to
low) specifies the order of the lines in the signal vector. If any optional parameters appear they are

associated with all input/output nemes in the declaration. Table 1 definas the legal parameters.

Table 1: Signal parameters

{Syntax Meaning For input/output}
pla(n) Associate signal with pla # n both
top Position signal on top of pla both
bottom Position signal on bottom of pla both
renames (id) Give the signal id anotirer name both
earlier (n) Move the signal n states earlier cutput
later (n) Move signal n slates later output

A signal declaration specifies physical placeinent intormation using the directives top and bottom.
The order of the signals on the PLA is given by the order of their declaration. The state signals are
arfdad by SLIM and appear last in the PLA inputs and first in the outputs; this facilitates
interconnection. When mere than a single PLA is specified SLIM determines which outputs should
anpear from which PLA's (by declaration or defauit to PLA 1). Only the necessary inputs are

ygenerated for each PLA; thesc are based on the outputs that are specified in that PLA.

The optional pipelined directives, i.e. earlier and later, move an output signal forward or

backward in the state graph. This is very useful when a particular signal, which is logically associated

COMPUTER-AIDED DESIGN SESSION

Lva
SLIM: A Language for Microcode Description and Simulation in VLSI

with a single operation, must occur earlier. A frequently occurring example cof this is precharging or
enabling of alu's. Although the funclional operation add appears to occur in a single state the alu
must be precharged/enabled one state earlier. The pipelined directives provide a convienent way to
express such relationships without adding needless details to the microcode description. If an output
signal x appears in a state s conditional on input ¢ and x is pipelined earlier(i), then the output x will
appear, conditional on ¢, in all the states that precede s by i states. Although pipelining can be done
into both predecessor and successor states, by far the most common situation is pipelining into the
immediate successor state. SLIM finds all predecessor or successor states, including those that
occur when the state that is pipelined from is the target of a branch or call. Pipelining is not permitted
across a procedure return, i.e. in the state following a call. The renames directive gives a signal
another name, without associating the other characteristics (e.g. pipelining) of the renamed signal.
This is useful if a particular signal must be pipelined nearly all the time, but occasicnally nonpipelined

generation of the signal is needed.

3.2 Describing the relationship between enviromment and outputs

Since a procedure or function in the environment can logically correspond to one or more signals,
SLIM provides a method of defining the mapping between environment routines and signals. This
method allows the microcode description to be functionally oriented, and to significantly decrease the
amount of code needed to describe the PLA implementation of the microcode.

The mapping between environment procedures and signals to be generated in the PLA is given in
the definition section of an environment procedure or function. The definition section starts with the
keyword definition and appears immediately after the function or procedure header. Procedures in
the environment without a definition section are presumed to be for simulation purposes only. The
definition section consists of a list of signal definitions which are separated by semicolons; the

d:finition section is tarminated by end.

A signal definition has the form:
[pattern-string :] signal-expression
The optional pattern-string is used to specify different signal combinations based on the values of the
parameters to the environment procedure. The pattern-string consists of a list of string patterns
separated by commas and enclosed in parenthesis. If the pattern list matches the list of actual
parameters in a call to this procedure, then the signals in the signal list are generated as outputs.
Each string pattern can either be a alphanumeric string or a "*". The latter is a wiid card match,

indicating that any actual parameter value should generate a match for the corresponding parameter.

CALTECH CONFERENCE ON VLSI, January 1981

260
John L. Hennessy

The signal-expression specifies what signals to generate; it may also contain invocation of other
environment procedures. Before it is evaluated any identiliers in the signal-list that correspond to
formal parameters are replaced by the actual parameter values in the call for which signals are being

generated. Tha types of signal expressions are defined in Table 1.

Jigpal-cxprassion Meaning
signal name emit the signal
procedure-name(parameters) emit the signals for the named procedure
signal-expression and signal-exoression emit both sets of signal expressions
expr, & expr, Emit expr, concatenated to expr,
signal name = integer constant emit encoded constant to the signal vector
not cignal-expression amit inverse ot a simple signal-expression
signal-name[constant] emil a single signal within a signal vector

Table 2: Signal-expressions

If the signal identifier is an environment procedure aad not an signal name, the definition section of
the referenced environment procedure is used for that signal. Maturally, the procedure name can be
followed by parameter strings. This facility allows multi-level environment procedures to produce

signals by composing the definition list in each procedure.

ln Figure 4 some input/output declarabions and two of the procedures from the Mead/Conway
tralic light cxample are given. The highway trafiic light is encoded as a two-element vector; the input
tosting for cars is a single bit. Mote that PLA signals may have the same name as components of the

Pascal pragram.

Figure 4: An example from the Mead/Conway Traffic Controller

lype colortype = (grean,yellow,red):
inputs c¢: boitom;
outputs hi[1..0] : bottom;

procedura highlight(color: celortype);
definition

(green): hl = 0 ;

(yellow): hl = 1 ;

(red): hl = 2 4
begin hY := color end;

function cars :boolean;

definition ¢
beqgin cars = (e = 1) end;

COMPUTER-AIDED DESIGN SESSION

Ll

SLIM: A Language for Microcode Desecription and Simulation in VLST

4 Using SLIM

A SLIM program can be used to drive a microcode simulation as well as generate a PLA layout. A
SLIM simulation requires a microcode description with all of the environment procedures and
functions. The simulation is presently done by creating a Pascal program which embcdics the

semantics of the microcoda. A SLIM simulation can be requested with state tracing.

PLA generation is a straightforward process, which is done in two parts. The first part analyzes the
microcode structure and creates product term lists for each output. The effect of signal definition and
pipelining is integrated before making these lists. The PLA layout is then done by a sgparate program
which inputs the signal descriptions and the product term lists. The intermediate form uses boolean
expressions; this allows the use of any PLA generator that accepts boolean equations as input and

the use of PLA cptimizers prior to iayout.

Another program in the SLIM system can be used to assist in choosing a state encoding (applicable
only for finite state implementations). The program acceptances output frem SLIM with the state
entries unencoded. It computas a matrix whose i,/ entry is the saving in preduct term count that will
result if states i and j are encoded so that they can be uniquely distinguished froim all other stales with

a single product term.

4.1 Ensuring micraocnde correctiness

There are several useful types of debugging and checking of microcode that can be done in the
process of simulation. Most important among these are delecting potential errors which arise
because the simulation does not exactly match the PLA implementation, or because the microcode
does not employ the environment in a manner that the hardware is designed to support. Another
class of errors may arise because the simulation may fail to test all possivble combinations of inputs or

fail to t2st all states.

The major reasons that the simulation and PLA implementation might behave ditterently is because
the simulation treats cutputs, environment procedures, and the state as unique entities in a sequential
manner. In the PLA these objects are interrelated. Problems such as assigning lwo next states are
resolved into a single, well defined action in the simulation, but these actions result in a disaster in the
PLA implementation, since both sets of state bits are set high. Certain classes of these errors can be
caught by predefined, microcode independent methods, but others require a more general scheme,

which we can also employ to find errors concerning the use of the hardware environment by the

CALTECH CONFERENCE ON VLSI, January 1981

262
John L. Hennessy

microcode. SLIM checks for common sorts of errors, such as failing to assign a next-state in a finite

state machine implementation, or attempting to assign more than one next-state.

Many of the hardware/microcode inconsistencies arise from situations where certain outputs are
being incorrectly used, perhaps with respect to timing, or the hardware is being instructed to preform
some task it is not physically able to undertake. Many of the latter types of errors can be caught using
a strictly type-checked environment specification. For example, suppose that the register file on
snme microcoded processor is divided into two sections in such a way that two reyisters from the
same section can not be gated to the alu (many hardware micromachines have this property).
Microcode errors that arise because two registers from the same secticn are being sent to the alu can
be detected by defining the machine structure with two different types for the registers and specifying
that the alu environment procedures have two parameters — cne from each register section. This

class of simple errors is detected at compile-time.

A more complex class of errors can not te detected with a stiaightforward compile-time scheme.
Some exarnples of this type ot error are: attempts to use the bus for two different quantities in the
same tire frame, overlapping use of environment hardware (such as an alu), and incorrect timing of
an output in a state. Many of thes errors can be detecied during simulation using a set of assertions,
which can be checked during simulation. We divide these assertions into two groups: invariant
assertions and state dependent assertions. The invariant assertions specify conditions which must
hold regardless of the current state, e.g. if an aiu output occurs in this state, the alu was precharged
in the previous state and was not deing any other operation. Siate dependent assertions specify
properties which should hold at a particular state, e.g. a certain part of the machine should have a

cartain value.

In SLIM anywhere an action can occur, an assertion can be specified. Although the assertion
generates code for simulation purposes, no PLA entries are affected or generated. Assertions are
orly used to ensure that certain properties hold. An assertion has the form assert invocation, where
invocation must be the invocation of a boolcan function. Whenever execution reaches an assert
siatement at simulation time, the simulation invokes the specilied function. If the function returns

false the simulation is halted with an appropriate error message.

In using SLIM, we have found that the expressive power of SLIM's pipelining and signal definitions
is one of its major advantages. However, the mechanism can also lead to errors, since the

specifications are not reflected in the simulation. To assist in ensuring that the signal specifications in

COMPUTER-AIDED DESIGN SESSION

AR RS

SLIM: A Language for Microcode Description and Simulation in VLSI

a SLIM program are consistent and correct, two types of output-generation checking are supported.
Pipeline checking will cause a warning to be generated whenever a signal component both occurs in
a state and is pipelined into that state from another state. This appears to catch most errors in the use
of pipelining. Another powerful check is examining sets of mutually exclusive signals. A SLIM
program can specify one or more exclusive sets. SLIM will check that no two signals in the same

exclusive set can be generated in the same state.

5 Current status and concluding remarks

This paper describes SLIM, a language and processing system for describing microcode whose
implementation orientation is PLA based. The purposes of this language are: to document the
microcode at a reasonable, logical level while providing a firm specification; to allow cxtensive
simulation, debugging, and error detection; and to automatically create the PLA layout necessary to

implement the microccde description.

SLIM has been working for approximately ons year. It is coded in standard Pascal. To date,
experience with SLIM has been highly favorable. It has been used in the development of two large
chip designs [1, 2], both of these contain extensive microcoding. It has also been used in a number of

smaller projects with favorable results.

The maost signiticant observation we have made in using SLIM is the enormous significance of the
contrgl function and its design. For large projects, we have found that €0-75% of the design time is
spent in constructing and debugging the control as specified by SLIM. A large amount of this time is
spent is construcling an accurate functional specification of the data components as a SLIM
environment. In many instances, the construction of SLIM environment has uncoveraed bugs in the
data components being described. The specification of the control program itseif is also time

consurning especially in the debugging process.

There are many interesting questions concerning the applicability of SLIM that have not been
investigated. It would be interesting to examine the use of SLIM for microcode machines whose
architecture is not slrictly PLA based, but whose microcontrol is straightforward. We are also

interested in supporting a wide variety of PLA implementations and in PLA optimization.

CALTECH CONFERENCE ON VLSI, January 1981

264

John L. Hennessy

Appendix 1. Annotated Syntax of SLIM

This is the syntax for the non-Pascal porlion of SLIM. Nonterminal symbols appear to the left of =;
terminal symbols in the grammar are distinguished by being in quotes. The metasyntax [a] means
that the string a is optional, and {a} means that the string a may be repeated zero or more times.

Comments can appear at the end of a production and are started with --,

Program = 'program’ <id>' Programparms ';' Outerblock
Quterblock = Constpart Typaedefpart Vardeclpart lopart Procpart Fsm -- A Pascal program with a fsm body
Procheading = ‘procedure’ Kicl>' Formalparms ;' Definitionpart - Procedures conlain definitions
Funcheading = function' 'Cid>»' Formalparms ' "Gd>' ;' Definitionpart
lopart = [inputs’ Speec { " Spec]] [outpuls’ Spec { ' Spec}] -- Input/output declarations
Spec = Vector { "' Vector} [Parameter {Parameter} ;'] - An input/output vector
Vector = "Gd>' | ['<Gnt>' ' '<int>']] -- Vector has integer bounds
Parameter = 'pla’ '(’ '<nt>’ ')’ -- PLA number

= top' -- Top of PLA

= 'bottom’ -- Bottom of PLA

= ‘earligr '{' 'n' ') -- Fipeline into earlier states

= 'later (" '<nt>' ") -- Pipeline into later slates

= 'remames’ (' '¢d>" ') -- Rename a signal (without pipelining)
Definitionpart = ['definition’ Definition {Definiticn} |
Definition = ['(' Patterntist ')’ '] Qutpul { ‘and' Qutput} ' -- Definition is a series of pattern lists
Patlernlist = Paltern (',' Paltern} -- Each paitern list must match the parameter list
Pattern = "*' - Wild card match

= 'Cid>"' -- Mame match
Output = ['not’] Plainoutput -- Qutouts can he invertad
Plainoutpul = Invocation [‘& Cutput] -- Outputs can be composed by concatenation
Gd>' ' ="' Constant -- A vector can autput an encoded integer
id>' [Gn>' '] = A single line lrom a vecior can ba made high
Fsm = 'fsm’ Stateindpart {State} ' - The FSM contains a stale independent part and a list of states
Staleindpart = '[* Statespecifiers '|'
State = ['<id>' '][Statespecifiers '] - States are optionally labelled
Statespeciliers = Stalespec { ')’ Statespec}
Slatespec = ['il' Cond { ‘or' Cond }'=>" Action | - A state is conditional on a sum of product terms
Cond = {Invocation 'and’ } invocation --Fonm of a nroduct term, the invocations are functions
Invocation = "> [(' Constant {*.” Constant] ')’ | -- Limited
funclion invocation, constant can be a variable
Action = '[' Action { ;" Action} ']' -- Composite action

= 'assert’ invocation -- Assert aclion
= Invocation -- Procedure invocation

‘next” '<id>' -- Goto specilied State
‘call' "Gd>" -- A micrecode subroutine call
return’ - A microcode subsroutine return

]

1]

n

COMPUTER-AIDED DESIGN SESSION

LU
SLIM: A Language for Mierocode Description and Simulation in VLSI

Appendix 2. More Examples

The Full Traffic Controller from Mead/Conway

program traffic(input,output);

const short = 2; long = 4;

type colortype = (green,yellow,red);
signaltype = 0..1;

var time: integer; h1,f1: colortype: c: signaltype;
inputs c.tl;ts : botlom;

outputs st,h1[1..0],f1[1..0] :bottom;

procedure getinput: { for simulation purposes only }

begin write('cars? ')iread(c): end;

procedure timer;: { for simulation purposes only }

begin if time < long then time := time + 1 end;

procedure highlight(coler: colortype);

definition

(green): h1 =0 ;
(yellow): h1 = 1 ;
(red): h] =2 3
begin h1l := color end;
procedure farmlight(color: colortype);
definition
(green): f1 = 0 ;
(yellow): f1 = 1 ;
{red): £1 =2 3
begin f1 := color end;
procedure starttimer;
definition st;
begin time := 0 end;
function cars :boolean;
definition ¢;
begin cars i= (¢ = 1) end;
function notcars :boolean;
definition not c;

begin notcars := not cars end;
function timeout(length: integer) :boolean;
definition

(lang)= &Y 3
(short): ts ;

begin timeout := (time >= length) end;
function nottimeout(length: integer) :boolean;
definition

(long): not t1 ;
(short): not ts ;
begin nottimeout := not timeout(length)end;

fsm
[getinput; timer] { state independent component }

highgrn: [highlighL{green); farmlight(red):

it notcars or naottimeout(long) => next highgrn;

il cars and tiweout(long) => [starttimer; next highyel 7]]
highyel: [highlighi(yellow): Farmlight(red);

if notlimeout(short) => next highyel;

if timeout(short) => [starttimer; next farmgrn]]
farmgrn: [highlight(red); farmlight(green):

it cars and nottimeout(long) => next farmgrn;

if notcars or timeout(long) => [starttimer; next farmyel]]
farmyel: [highlight(red); farmlight(yellow):

if nottimeout(short) =:» next farmyel;

if timeout(short) => [starttimer; next highgrn] 1.

CALTECH CONFERENCE ON VLSI, January 1981

John

Example — Computing GCD

program test (input,output);
var x,y: integer;
inputs
eql,eq0,gtx, gty: bottom;
outputs
aluop[1..2] : bottom ;
enablzx,enabley: lop ecarlier (1);
procedure init;

begin read(x): read(y): end;
procedure subt (var a,b: integer);
definition

enable & a and enable & b and alucp = 1;
begin a := a-b end;
function greater (x,y:integer): boolean;
definition

gt & x ;
begin greater := x>y end:
function equal (x,y:integer): boolean;
definition eq & y:
hegin eq := x = ¥; end;
function ne(x,y:integer): boolean;
definition not eyual (x,y):
bagin ne := not equal(x,y): end;

fsm
[:]
one : L 10i%
assert ne(y,0):
it equal(x,0) => next endstate]
[call two]
[next one]
two: [if greater(x,y) => [subt (x.y): next two 1;
if greater(y.x) => [subt (y,x);: next two]]
three: [assert equal(x,y):

if equal(x,1) => [writeIln(1); return];
if ne(x,1) => [writeln(y): return]]
endstate: [halt] .

COMPUTER-AIDED DESIGN SESSION

L. Hennessy

R

SLIM: A Language for Microcode Deseription and Simulation in VLSI

References

1. Clark, J.H. "A VLSI Geometry Processor for Graphics." Computer 13,7 (July 1980), 59-68.

2. Clark, J.H. and Hannah, M.R. "Distributed Processing in a High-Performance Smart Image
Memory." Lambda 1, 3 (1980), 40-45.

3. Clark, J.H., Hennessy, J.L., Hannah M.R. A comparasion of two different VLS| control structures.
Computer Systems Laboratory, Stanford University, Dec, 1980.

4. Duley, J.R. and Dietmeyer, D.L. "Translation of DDL digital system specification to Boolean
equations." /EEE Trans. Computers ¢-18, 4 (Apr 1969), 305-313.

5. Holloway J., Steele, G., Sussman, G, Bell, A. The Scheme-79 Chip. Tech. Rept. 599, Artificial
Intelligence Laboratory, MIT, Jan, 1980.

6. Mead, C. and Conway, L.. Introduction to VLSI Systems. Addison-Wesley, Menlo Park, Ca., 1980.

7. Weber, H. High Level Design for Programmed Logic Arrays. Proceedings of Fourth Conf. on
Computer Hardware Description Languages, May, 1979, pp. 96-101.

CALTECH CONFERENCE ON VLSI, January 1981

