
SLIM: A Language for Microcode Description
and Simulation in VLSJ1

John Hennessy
Computer Systems Laboratory

Stanford University

Abstract

SLIM (Stanford Language for Implementing Microcode) is a programming language based system for
specifying an ' simulating microcode in a VLSI chip. The language is oriented towards PLA
implementations of microcoded machines using either a microprogram counter or a finite state
machine. The system supports simulation of the microcode and will drive a PLA layout program to
automatically create the PLA.

1 Introduction

Vl.SI chip design has rapidly become ::1n area of great importance and interest. Mead and Conway

[6] have proposed a design methodolouy for VLSI systems that has been widely employed. Their

design methodology proposes a chip organization using: fini te state control implemented with a PLA,

functional units controlled by the PLA, and a set of data paths. This design methodology has been

used in a number of large chip designs [5, 1, 2] . The finite state control can be thought of as

microcode. Within a design that follows the microcoded control approach, designing and debugging

the microcode appears to constitute a significant portion of the work involved in the desi9n process

[1, 2] . This paper describes a language for synthesizing the control units of ~ chip from a high level

l&nguage description.

Presently few tools exist to assist the user in designing and debugging the microcoded control.

Programs to construct PLA's from boolean equation are widespread; however , the difficult

component of control unit design is to specify and debug the microcode. This difficulty arises in

generating the boolean equations that describe the finite state machine control. Transforming these

1This resear ch was partially supported by the Join Services Electronics Program under contract It DAAG29-79·C·0047 and
the Defense Advanced Research Projects Agency under contract It N0/\903·79 C-0680.

CALTECH CONFERENCE ON VLSI, Janua~y 1981

254
John L. Hennessy

to a PLA layout is tedious and error·prone but mechanically straightforward. Some work has been

done on describing PLA's at a higher level [7] and on synthesizing PLA descriptions from low level

state machine descriptions in DOL [4].

SLIM (Stanford Language for Implementing Microcode) is a programming language useful for the

design of a microcoded system that will employ PLA implementation techniques. Unlike earlier work

SLIM is functionally oriented. Control in SLIM is based on a finite state machine, but SLIM deals with

objects that can be more abstract than the actual PLA inputs and outputs. The SLIM system supports

both microcode simulation and automatic synthesis of the microcoded control function either in ROM

or PLA. SLIM will also accommodate either finite state machine control or control with a program

counter.

Correct microprograms are both tedious and diuicult to write for several reasons. First, the

programming language is extremely low level. Typically, the designer must deal with a primitive finite

state machine without the benefit of a human·engineered interface. Secondly, many of the

microprograms are large. This leads to a relatively complex program without a great deal of structure;

this is especially true if the finite state machine is coded as boolean equations. A boolean equation

approach makes it difficult to consider altering the mlcrocode, even during the debugging process.

Another major difficulty is the significant level of detail that must be expressed. This leads to one of

two pitfalls: either the microcode description is very low level and cluttered with details, which ma!<es

it impossible to understand; or the designer uses an ad hoc higher level description of the microcode.

An ad hoc description is unsuitable because the translation to the low level microcode must be done

by hand, and the description tends to be too informal and vague. Without a higher level standard

representation, microcode programs arc difficult to write correctly and virtually impossible to

understand. The SLIM system is also able to translate the boolean equation representation of the

PLA into a layout.

We can summarize the goals of SLIM as

• a symbolic higher level language suitable for designing and documenting the micro·
program and oriented towards Implementation with PLA technology,

• simulation tools to debug the microcode,

oe automatic layout of the PLA based on the microcode.

T

255
SLIM: A Language for Microcode Description and Si~ulation in VLSI

The SLIM design goals spawn a set of language and system requirements. The microcode

simulation requirement implies the ability to describe the subsy::>tcms that interact with the

microcontroller; we will refer to these subsystems as the environment. Describing the environment

can be easily done in a conventional programming lanr;uage, if the interaction \Nith the microcode

occurs in a restricted and well defined rn:mner. Separating the micromachine description from the

environment description has two benefits. The separation increases comprehensibility of the

micromachine structure. A specialized language is also more appropriate for the microprogram

design; without the separation the translation process is difficult or impossible.

The environment of the finite state micromachine can be described in n conventional programming

language. The environment consists of data structures and variables whi<.;h can be used to simu late

the structure of the subsystems. The environment/controller interface is bused on a set of functions

and procedures. The functions, wllir.ll must be type boo lean. correspond to the inputs to tile

microcode machine, while the procedures correspond to outputs. We have chosen Pascal to

represent the environment. The Pascal data structures provide add;tional support in describing the

functional components. The wide variety of data types coup led with strong type checking also

provides support for checking the rnicro,;ode and making design restrictions explicit in the SLIM

program.

Since the end product of SLIM program is a finite state machine implernented with PLA techniques,

a SLIM program must incorporate details about the implementation. This specification should

include: mappings between functions and procedures 1n the environment, actual PLA inputs and

outputs, and timing specifications that force outputs to occur enrlier or later than they occur in the

program. Including these details separately allows a more functional orientation in the microcode

description. Lastly, details concern ing the actual PLA layout are needed, e.g. the number of PLA's

and the positioning on the PLA of each signal.

2 Specifying the microcode

A SLIM program consists of a finite state machine. Each state in the Sl IM proyram contains a

s~ries of conditional actions that may cause one or rnore outputs to be high, or m:::ty specify the next

state. The next state may be specified by default or explicitly. The outputs nssociatecl with a given

state are conditional on a set of product terms only. /\!though arbitrary boolean exprecsions could be

used, SLIM does not because it requires a significant ammmt of processing to tran:3form the

e"pressions to a PLA oriented sum of products form. In this process the number of product terms

CALTECH CONFERENCE ON VLSI, January 1981

256
John L . Hennessy

added to the PL/\ may be substantial (up to 2n terms for an expression of length n). Tile property that

-the number of product terms in the PLA is aprroximately equal to the number of preconditions for

the outputs in a SLIM program- has been useful in estimating the PLA size.

There ::.tre two major schemes for imrlemcnting the state component of a finite state machine. A

standard finite state implementation uses a fixed state assignment and includes an encoding of the

nexc-state function in the PLA. An alternat1ve im~,Jiementation uses a microprogram counter that is

incremented under external control. Each approach has benefits that depend on tl1o the micro

program being implemented. The tradeofls ancl the advantages of the two different VLSI control

implementations are discussed in [3]. SLIM supports both control implementations, provides default

nex t states for program counter implementations, and will support subroutines with call and return in

either case.

A SLI!v1 microprogram consists of a set of states listed sequentially. Each state may optionally have

a lnbcl, which denotes the state name. The specification of the first state is preceded by a set of

s;:>~cificat:ons for outputs which are state independent. Figure 1 shows the format of a the state

machi11e specification.

fs:n
$tate !:puclfu;alion (for stato mde{)encfent outputs}
statc-nam'E! (op/Je>nilO : {state-specilica/ionJ

st<Jte-name (optional}: [stato-spccificationj.

Figure 1: Specifying the state machine

A state specificat!on is a list whose Plements are either unconclitional actions or ccnditional

cornmanrls. A conditional command consists of a condition and a list of actions. A condition consists

of a list of one or more product terms that are joined with or, and a product term is a series of

predicates joined with and . A predicate must be a call to a function in the environment; predicates

correspond to one or more PLA inputs. The interpretation of the command is: if the entire condition

ENaluates to true, then the actions should be executed. If there are no predicates, the cond ition is

a~sumed to be true and the action is always executed in that slate. The form of o. state specification is

g1ven in Figure 2.

il p1 and and p
0

or q 1 or q01~> action

Where the pi are function invocations and thu qj are product terms,
like the first term.

f.igu re 2: .State specifications

COMPUTER -A IDED DESTCN SESSION

257
SLIM: A Language f o r Microcode De sc~iption a~d Simu~ation in VLS[

Each slate may contain a list of such specifications and the entire state is bracketed. During

simulation, state specifications are evaluated and executed sequentially, but in the actual PLA

implementation these operations will occur in parallel. The;efore, side effects between proceJures

that are outputs and functions that are inputs in the same state should b.J employed with great care.

2.1 Actions

There are two types of actions allowed: outputs and state change operr1tions. A lic l of actions can

be used os a single compound action by bracketing the list. Outputs ure invocations of procedures in

the environment and correspond to PLA outputs. The :3tate change directives dictate the next state.

All state change directives have effect only after the current state is completed; thus, all state

specifications with true conditions will be executed in a stole. The state change directives are:

next state-name · makes state-ll<~me tile next ::.tte.

call state-name -does a micrococJe call to the routine at state-name.

return- returns to tl1e state sequentially following tile calliny ~tate.

2.2 A short example

Figure 3 shows the finite state machine controller for the traffic liuht example from [6J . (The entire

example is given in tile appendix.) The state independent component is for simulation purposes. The

procedures Farmlight and Higt1lighc alter the color (which is o parameter) of the traffic light at the

farmroad and the highw<:ly. Timeout lool~s for the timeout condition, which is either sh•Jrt or long as

dictated b; the parameter. The function Cars correspond~ to the h;st for a car.

Figure 3: tvlicrocode specification for the Mead/Conway traffic controller

fsm
[getinput: timer] { state independent component }

h1glogrn: [highlight(green\: farmlight(rP.d): {lliah~Jay green and farmroud r~d}
if r.otcars or nottimeout.(long) => next highgrn;
if cars ihtd timeout(lony) •> [starlt imt~r: next h ighyel]]

highyel: (highll ght(y ollow): fa•·rnlight(red): {Htghway yellow and farmroar1 r·ed}
if nott1meout(short) => n~~t highyol:
if timcout.(short) "> [starttimer; otext farmgrn J]

farmgrn : (highl iuhl{I'Crt); fa1·ml ighl{green); {lligloway red and farm1•o ad green}
if ca1 s and not timeout(long) •> ntJxt f.Jrmgrn:
if notcJrs or l.imeout(lona) => [slarttimer: next faronyel]]

fumyel: [highlight(1·ed); farmlight(yellow): {llighway red and fa1·mroad yellow}
if nottimeout(short) '> n('xt farmyel:
1f timtJout(short) ~> [starttimer: next highgrn]].

CALTECH CONFERENCE ON VLSI, January 1981

258
John L. Hennessy

3 Defininn the Relationship to the PLA

The relationship between the microcode specification of the control program and the PLA is

defil'led by: declaring the input and output sianals for the PLA and defining tile mappings between

environment functions / procedures and input/output signals. The expressive power of this mapping

is one of the advantages of SLIM.

3 .1 Defininy input and output signals

PLA signals are defined by means of input and output signal declarations, which appear just before

the de finition of the environment procedures. Signal declarations beg in with the keyword inputs or

outputs, as appropriate. The general form of each declaration is then:

{name ['(' bounds')']} [':' parameters]';'

The list of names are the names of input or cutput signals being declared. The optional bounds

designator indicates whether a ;:>articular signal is a single bit or a vector of bits. In the latter case the

line can be treated as an integer encoded number; the order of the bounds (low to high or high to

low) specifies the order of the lines in the signal vector. If any optional parameters appear they are

associated with all inputloutpw ne.mes in the declaration. Table 1 defines the legal parameters.

{Syntax

pia (n)
top
bottom
renames (id)
e<:~rlier (n)

later (n)

Table 1: Signal parameters

Meaning

Associate signal with pia It n
Position siunal on top of pia

Po:::;ition !?ignal on bottom or pia
Give the si!J ilal irl anotl1er name
Mov~ the siunal n states earlier

Move sigalal n states late r

For input/output}

both
both
both
both

output
output

1\ ~ign ::1 1 declaration specifies physical placnment information using the dirertives top and bottom.

Tl1e order of the signals on the PLA is given by the order of th eir declaration. The state sianals are

ntlcL.;cl by SLIM and appear last in the PL/\ inputs and first in the outputs; thi r. facilitates

interconnection. When more than a single PL./\ is speci fied SLIM dete1 mines which outputs should

a;ipca' from which P:...A's (uy declc.J.rr.tion Or' default to PLA 1) . Only the necessary inputs are

g'3ner~ted for each PLA; these arc based on the outputs that are specified in that PLA.

The optional pipclined dir8ctives, i.e. earlier and loter, move an output signal forward or

tnckwnrd in the state graph. This is very useful when a particular signal, which is logically associated

COMPUTER -A IDED DESIGN SESSION

SLIM: A Language foP MicPocod e Desc~iption and Simu~ation in VLSI

with a single operation, must occur earlier. A frequently occurring example of this is precharging or

enabling of alu's. Although the functional operation add appears to occur in a single state the alu

must be precharged/enabled one state earlier. The pipelined directives provide a convienent way to

express such relationships without adding needless details to the microcode description . If an output

signal x appears in a state s conditional on input c and x is pipelined ca rlie r(i), then the output x will

appear, conditional on c, in all the staten that precedes by i states. Although pipelining can be done

into both predecessor o.nd successor states, by far the most common situation is pipelining into the

immediate successor state. SLIM finds all predecessor or successor states, including those that

occur when the state that is pipellned from is the target of a branch or call. Pipelining is not permitted

across a procedure return, i.e. in the state followiny a co.ll. The renames directive gives a signal

another name, without associating the other cl1aractcristics (e.g . p1pelining) of the renamed signal.

This is useful if a particular signal must be pipelined nearly all the time, but occasionally nonpipelined

generation of the signal is needed.

3.2 Describing the relationship oetween environment and outputs

Since a procedure or function in the environment can logically correspond to one or more signals,

SLIM provides a method of defining the mapping between environment routines and signals. This

method allows the microcode description to be functionally oriented, and to significantly decrease tl1e

amount of code needed to describe the PLA implementation of the microcode.

The mapping between environment procedures and signals to be generated in the PLA is aiven in

the definition section of an environment procedure or function . The definition section starts with the

keyword definition and appears immediately after the function or procedure header. Procedures in

the environment without a definition section are presumed to be for simulation purposes only. The

definition section consists of a list of signal definitions which arc separated by semicolons; the

ddinition section is tz rminated by end.

A signal definition has the form :

[pattern -string :] signal-expression

The optional pattern-string is used to specify different signal combinations b<1sed on the values of the

parameters to the environment procedure. The pattern-string consists of a list of string patterns

separated by commas and enclosed in parenthesis. If the pattern list matches the list of actual

parameters in a call to this procedure, then the signal~ in the signal list are generated as outputs.

E3.ch string pattern can either be a alphanumeric 3tring or a "• ". The latter is n wild card match,

indicating that any actual parameter vnlue should generate a match for the corresponding parameter.

CALTECH CONFERENCE ON VLSI, Januapy 1981

260

Tl1e signal-expression specifics what sionals to generate; it m:ly also contain invocation ~~ other

cnvironmP.nt procedures. Before it is ~valuated any identrlicrs in the siunol- list that corre3pond to

forrnnl parameters nre replacod by t11e ac tu al p<:trnrneter values in the call for which signu!s are being

generated. The types o f signnl exrressions arc defint~d in Table 1.

______ -:;ar.al o>.p.·r~:;:;ion

sianal name
procedure-name(parumetcrs)
Stgnal-c.-<pre~•ston an<.J stgnal-cxpression
expr 1 & expr 2
s1gnal n ~llne "' integer constant
not :::ignnl expression
Stgna/-namr.J(constant]

:-...~c;..ninq

emit the s ignal
emit tl1e signnls for th e nam(!d procedure
emit uoth sets of signi..l l expressions
Emit cxpr 2 concaten:Jted to expr 1
emit CllCOded const::nt to the signnl vector
emit in'JC'IS<.: ~~a simple signal-expression
emit a single s1gnal within a sianal vector

Table 2: Signal cxprC'!ssions

If the rianal ide1llifier is an P1lVIronment procedure c..ad nut an srynal name, the definition section of

the rcfcrenr:td nnv1ronment procedure rs u~ecl for that sign,ll. Naturally, ll1c procedure name can be

fn:lowed by par~~rnc ter s trinos. Th1s far::ility al:ows multi -level en vironmr-mt ptoccdures to produce

:>luna ! ~ by composing the d<:fmrtton li'3t in each procedure.

,,, 1- 1911rc ·1 B•)me itlput/outpttt cleclnraliuns and two of the procedures irom the Mead/Conway

tral iG !iJht c.t<l1 11plc arc aivcn. The hi()l l\NiiY tr:lff i;:; li~Jht i::; encoded as a two-element vnctor; the inpu t

t•Js trnq for c~rs is a single b1t. I'I •J te l11at PL1\ ~-ionab may i1ave the same name as comro,,e.,ts of the

Fiuu re 4: An ex::J.,qple from the Mc<.~d/Comvny Traffic Controller

type colortyp~ • (grenn.y~llow. r nd):

tnPlll5 c: bottom:
OU!J.lll l S hl[l. .0) : botto m :

pro cNinrc h1ghl igh t(color·: color t ype):
dr.f1nrl10n

(green): h l : 0 :
(y 111 1 0\'1) : h 1 D 1 ;
(r· e u) : h 1 • 2 ;

begrn h 1 : = colo r· end ;

func tion c:n r·s :boolean:
dc.finill.:>ll c:
b e<Ji n ca.·s : (c: 1) end :

COMPUTER - AIDED DESIGN SESSION

£.U.l

SLIM : A Lnnguage fo~ Mi~roeode Descr[ption ani ~i ~u 1 ~tl1~ t n VLS[

4 Using SLIM

A SLIM program can be used to drive a microcode simulatinn as well as genP.mte a PLA l<tyout. A

SLIM simulation requires a microcode description 1Nitll all of the enviro11mcnt rrocedures and

func tions. The simulation is pre!':cntly done by creuting a Pascal proyrnm wl1ich umbodil:s the

semantics of the microcode. A SLIM simulation can be requested with state tracing.

PLA generation is a straightforward process, wl1ich is done in two purts. The first part analyzes the

microcode structure and creates product term lists !or each output. The effect of signal definition and

pipelining is integrntecl before rnal~ino these lists. The PLA layo~1t is then done by ~l separate program

which inputs the signal descriptions and the product term list:.>. The intermedi ;.1 te form uses boolean

expressions; this allows the use of any PLA genentor tllat accepts boolean r:quations as input and

tile use of PLA optimizers prior to inyout.

Another program in the Sll tvl syr.terr. can be used to as->ist in choosing a state encoding (;:pplico.ble

only for finite state implementations). The progro.m acceptnnces output from Sl IM >.vith tl1e state

entries unencoded. It compu tes n matrix whoso i.i entry IS the s,wing in prcduc t tc r:n CUL•nt tilat will

result if states i and j are encoded so ti1::: tr.ey can t;e uniquely di::;tinguislw<.i rro.n 811 oth0r s1:tlcs v:it11

a single product term.

4.1 Ensuring micr')cod e correctness

There are several useful typas of debugning unci checking of micrucor!e th 1t c :tn b~ dc,ne in tl1e

process of simulatio11 . l\ilost important among tiH~se are detnc.ting potential en or:-> wl1ich arise

because the simulation does not e:<Cl.ct!y match tht') PLA implement~1tion, or vec:wse the microcode

does not employ th e e::nvironment in Cl manner that the h::trd·,vQre is deSi<JnC'cl to support. Anotl1er

class o f errors may arise because the ·>~mu l ation may fail to test all pcssiiJic COitlbinations of int.Juts or

fail to t.)st all states.

The major reasons t11at t11e simulation :.1nd PLA implementation llliullt behave ditfcrc1lfly is because

tile simulation treats outputs, envir0111ncnt procedures, and the state 3S uniqu8 Ullli!ics i11 r1 ~;equential

manner. In the PLA tilcsa objects are interrel<l tccl. Problems such as assignino two next states are

resolved into a single, well defined action in the simulation, but these actions resu lt in a disaster in tile

PLA implementation, since both sets of state bits are set high. Certain classes of these errors can be

caught by predefined, microcode independent methods, but others require a more general scheme,

which we can also employ to find errors concerning the use of the hardware environment by th e

CALTECH CONFERENCE ON VLSI J January 1981

262
Jo hn L. He nn e ss y

microcode. SLIM checks tor common sorts of errors , suc l1 as tailing to assign a next-state in a finite

state machine implementation , or attempting to assign more than one next-state.

Many of the hardware/mic rocode inconsistencies arise from situations where certain outputs are

beinu incorrectly used, perhaps with respect to timing, or the hardware is being instructed to preform

some task it is not physically able to undertal<e. Many of the latter types of errors can be caught using

a stric tly type-c hecked environment spec ification . For example, suppose that the registe r file on

s0me microcoded processor is divided into two secti ons in such a way that two reuisters from the

same section can not be gated to the alu (many hardware micromachines have this property) .

Microcode er rors that arise because two registe rs from the same section are bemg sent to the alu can

be detected by defining the machine struc ture with two different types for the registem and specifying

that the alu environment procedures have two parameters- one from each reg ister section . This

class of simple errors is detected at compile-time.

A more complex c lass of errors can not be dolected wi th a 3traightforward compile-time scheme.

Some exarnples o f this type ot error ure: attempts to 1 1~e the bus for two different quantities in the

same tirne frame, overl ~1pping use of enviro 11 ment lw rdware (such as an alu). and incorrect timing of

an output in ::t state. Many of thes e~rors can be cletec t0d durir:a simulation using a set of assertions,

which can be checked during simulation . We di11iclc tll €..Se assertions into two groups: invariant

assertions and state depenrlent assertions. The invariant assertions specify conditions wl1ich must

holcl regardless of tile current state , e.g. if an alu output occurs in this state, t:1e alu was precharged

in the previous state ancl was not dc ing any other operation . State dependent assertions specify

properti es vJilich should hold at a particular state, e.g. a ce rtai11 part of tile machine should have a

certain value.

In SLIM anywhere an ac tion can occur, an assertion can be specified. Although the assertion

aenerates code for simulati on purposes, no Pl.A entries are affected or generated. Assertions are

or.ly used to ensure that c.;rtain properties hold. An 8Ssc rtion has the form nssert invocation , where

invocation must be the invocation of a hoo!<)an function. Whenever execution reaches an assert

statement at !';imulation time, the simul<ltion invokes the specified func tion. If the func tion returns

false the simulation is halted with an appropriate error message.

In using SLIM, we have found that the expressive power or SLIM 's pipolining and signal definitions

is one of its major advantages. However, the mechanism can also lead to errors, since the

Sj.)ecificutions are not reflected in the simulation . To assis t in ensuring that the signal specifications in

COMPUTER-A IDED DESIGN SESSION

IJVV

SLIM : A Language for Microcode Description and Simu~~tion in VLSl

a SLIM program are consistent and correct, two types of output-generation checl<ing are supported.

Pipeline checking wi ll cause a warn ing to be generated whenever a signal component botfl occurl'i in

a state and is pipelined into that s tate from another state. This appears to catch most errors in the use

of pipelining. Another powerful check is examin ing se ts of mutually exclusive signals. A SLIM

program can specifv one or more exclusive sets. SLIM will check that no two signals in the same

exclusive set can be generated in the same state.

5 Current status and concluding remarJ~s

This paper describes SLIM, a langucge and processing system for describing micrococle whose

implementation orientation is PLA based. The purposes of this language are: to document the

microcode at a reasonable, logical level while provid ing a firm specification; to allow extensive

simulation , debugging, and error detection; and to automatically create th e PLA 13yout n'3ccssary to

implement the microcode description.

SLIM has been working for Clpproximatelj' on!} year. It is coded in standard Pascal. To date,

experiHnce with SLIM has been highly bvorable. It has been used in the development of two large

chip designs [1, 2], both of these contain extef'lsivc microcoding. It hns al<;;o ueen used in a number of

smaller projects with favorable resu!ts.

The most significant observation we have made in using SLIM is the enormous sign if lc11ncc of th e

control function and its design. ror large projects, we have found that 60-75% of the de:t>iun time is

spent in constructing and debugging the control us specified by SLIM. A lnrae amount of this time is

spent is constructing an accurat~ func tional specificat ion of the data component~ as a SLIM

environment. In many instances, t11e construction of SLIM environment hGs uncovered bugs in the

data components being descr ibod. The specification of the control proyrarn itself is also time

consurning especially in the debugging process.

There are many interesting questions concerning the upplicability of SLIM that have not been

investigated. It would be interesting to e::amine the use of SLIM for microcode machines whose

architecture is not s trictly PLA based, but wt1ose microcontrol is strai9htforward. We are also

interested in supporting a wide variety of PLA implementations and in PLA optimization.

CALTECH CONFERENCE ON VLSI , Janua~y 1981

264

John h . Hennessy

,1.\ppendix 1. Annotated Syntax of SLIM

This is the syn tax fnr tile non-Pascal portion of SLIM. Nonterminal symbols appear to the left of =;

terminal symbols in the grammar are d ist inguished by being in quotes. The metasyntax [a] means

tho.t the string a is optional, and {a) means that the strina a may b8 repeated zero or more times.

Comme:1ts cnn appear at the end of a production and are started with -- .

Program = 'program' '(td)' Ptogr<Jmparms ';' Outc rblock
Outerl>lock - Co11stpnrt T~·w~dcfpat t V.::rdeclpart lopa1 t Procpart Fsm -· fl Pascal program w1th a Ism body
Prochl!atltng ~ 'proc.edure' '(irl>' f Ollll;llparms ':' Defin'tionpart Procedures contain definitions
Fun~.:heading = funct•on' '(id>' Fnt mnlporms '·' '(ttl)' ';' Definilionpart
lopart = [' tnputs' Spec { ',' Spcc)j [outputs' S~JC;;C {','Spec}} .. Input/outpu t declaratio ns
Spec = Vecto1 { '.' Vt•ctor} [' · PatamctN {Paratm'tct } ';'] ·An input/output vector
Vector = '<•d>' I [' '(lilt)' ' '(int>' ')) · Vector has integer bounds
Parameter = 'pia' '{' '(itH)' ')' PLA numher

= 'top ' .. rop of PLA
= 'bottom' Bottom of Plfl
= 'e.:u hct' 'i' '<int>' ')' · ri~Jlofi. 10 into earlier ~; tatcs

= 'later' '{' '(tnt)' ')' .. Ptpelllle in to I::JtPr r.t.1tcs
:: 'ren;~mer;' '(' '(td)' ')' - Rl·nomc a '>ignal (witho11t pipelining)

Dcflntttonpart = ['t.lcftntlloo' Odimtto" {Defintticn} 1
Def111itton "' 1 '(' rattu1 ntist ')' ···)Ou tput {'and' Outpu t} ';' -- DclinitiC'n 15 a neries ol pattern lists
Pat1e1111ist = Pnttern { ' ,' Patlern} -· Cach pattern It<;: mu$1 match the parameter list

Pattern = '·· ·-Wild CUttl m~tch
= '(irJ)' flame mntch

Outr>Ut :: [' not' J Pl;unoutput · Outout~ c:nn be i:wcrtnci
Pt;:unoutpul "' lnvuc:atton ['do' Outpu t]- Output·; t:nn be compoS!'!d by cotlcatenatlon

= '<id>' · ~' Constant .. fl V<'C tor can out~<lt an !lncoded integer
= '<id>' '[' '(int)' ']' .. l\ smglc ltn<' f10m 1 veu .. 1r can be made high

Fsm = Ism' S:'l\(;111dpart {Stat(·} · · 1 11c rSM conta1m, a 'Jtate inctcpendcnt part an:l a list of states

Sti11CtnJpart = '(' Statf:'sptcifier<; 'I'
Stmt:! = ('(id>' ···] '[' Sl'ltcspcc•l u~r:; 'I' ~tate:> etc optionally IJbolled
StalP.specthcn; - Sta tesn~c (',' Statosrcc}
Statc~pec =- 1 ·,r· Cond { or' Conrl) '"')' flctton 1 .. fl. !.tntc i.; condttion:~l on a sum of p roclo tct te rms
Conti " {In' oc<11ton ';Jncl' } ln·,ocntiun Fo1111 of a !JtOdu~.:l te1 m, the i:woca1to11s :lre func tions
lnvccatton ~ '(ic!)' ['(Const:.ml r· .' C0.15lanl) ')' I ·- Ltmtte.r
funclton u1vocott vn. c:onstant can be 11 vnliable
Actton ~ '[' flclloto { ',' Achon} ']' .. Composite action

:: 'assert' uwoc;JtHJn -· A.,;scr• action
-= tnvocat1on .. Procedure uwocation
= 'next' '(ttl>' --Octo spc<:tltcd ~t:.1 te

= 'call ' '< td>' .. fl mtcrocode subroutine call
= ' return' - A microcode sub~:routinc return

COMPUTER - AIDED DESIGN SESSION

SLIM: A Language fo~ Mic~ocode Desc~iption and Sirnuration in VLSI

Appendix 2. More Exnmples

The Full Traffic Controller from Mead/Conway

program traffic(input .output):
const sho1·t = 2: 1 ong • 4;
type colortype = (green,yellow,red):

signaltype = 0 .. 1:
var time: integer: hl,fl: colortype:
inputs
outputs
procedure
begin
procedure
begm
proccdu re
definition

c. tl. ts : bottom:
sl.hl[t .. O],Fl[l .. O] :bottom:

getinput; (for simulation purposes only }
write('car:;? '):rcad(c); e nd ;

timer: (for simulation purposes only }
if time c long then time :• time + 1 end;

highlight(color: cvlortype);

(green): hl = 0;
(yellow): hl 3 1 ;
(reu): hl • 2 :

begin hl := colo•· end:
procedure farmlight(color: colortype);
definition

(arenn): fl =0:
(yellow): fl n 1;
(•· eo): fl = 2;

bP.gin fl := color end;
procedure stJrttimer:
definition s t:
begin time : ~ 0 e nd:
function cars :boolean;
de finition c:
begin cars : ~ (c 2 l) e nd:
functi o n notca•·s :boolean ;
delinition not c:
begin no tears : = nc.t cars e nd:
fun ctio n timeout(length: intege•·) :boolnan;
definition

(long): tl:
(short): ts :

t:oeqin timeout :~(time> = length) end:
fun c tion not.timeout(length: inteuer) :boolean:
definition

(long): not tl :
(s hort): not ts ;

begin nottimeout : = not timeout(length)cnd;

Ism
[getinput: timer] (stale independnnt component }

highgrn: [h•ghlight(gt·"!en): fal'mllgllt.(•·ed):
tf no1.cars or not.t.11neout(lonq) => nc>~t hi (Jhgt·n:

c: signal type;

1f cars ilnd Lloneout.(long) => r st.nrttimer: next highyel)]
highyel: [hlghlight.{yt:lluw): farmlight.(red);

if nottimeoul(short) => ne>~t hi ghyel:
if timeout(short) ~ > [starttimer: ne>~t ra,.,ngrn])

farmgrn: [highlight(rcu); farml1ght(green):
if cars and nott i meout(long) => next farmgrn;
if notcars or t1oncout(long) • > [slarttimer: next farmyel])

farmyel: [hi ghl ight(rcd); farml1ght(yellow);
if noLt imeouL(short) R • • nex t farmyel;
if timeout(short) => [startlimer; next highgrn]].

CALTECH CONFERENCE ON VLSI, Janua~y 1981

266

Exa m ple - Computing GCD

program test (input,output);
var x,y: integer;
inputs

eql,eqO,gtx, gty: bottom;
ou tp uts

aluopf1. .2] : bo tto m ;
enabLA , onnul&y: top e:arlior (1);

p rocedu re in it;
begm read(x); read(y); en d;
P•Ocedure subt (v<Jr a,b: integer);
defil)ition

enable & a and en<Jbla & band aluop • 1;
begin a : • a-b enci;
function greater (x,y: 1nteger) : boolean;
definition

gt & X

begin greater : • x>y end:
f unc tion equal c~.y:integer): boolean;
de fin i tion eq & y:
bccin eq : = x • y; end:
function ne(x.y : integer): boolean;
definition not e411a 1 (x, y);
b~gin ne :• not equal(x.y): end;

f sm
[:]

one (init
assert ne(y,O);
if ec;ual(x.O) • > nc'<l endstate]

[call t.wo]
[next one]

John L . Hennessy

two: (if greater(x.y) •> (subt (x.y); next two];
if groater(y,x) • > (subt (y,x); next two]]

three: (assert equal(x.y):
1f equal(x,l) ~> [writeln(l); return];
1f ne(x,l) => [writeln(y): return]]

ends tate: [halt] .

COMPUTER-AIDED DESIGN SESSION

SLIM: A Language fo~ Mic~ocode Desc~iption and Simu~ation in VLSI

References

1. Clark, J.H. "A VLSI Geometry Processor for Graphics." Computer 13, -r (July 1980), 59·68.

2. Clark, J.H. and Hannah, M.R. "Distributed Processing in a High-Performance Smart Image
Memory." Lambda 1, 3 (1980), 40-45.

3. Clark, J.H .. Hennessy, J.L. , Hannah M.R. A comparasion of two different VLSI control structures.
Computer Systems Laboratory, Stanford Universi ty, Dec, 1980.

4. Duley, J.R. and Dietmeyer, D.L. "Translation of DOL digital system specification to Boolean
equations." IEEE Trans. Computers c-18, 4 (Apr 1969), 305·313.

5. llolloway J., Steele, G., Sussman, G., Bell, A. The Scheme-79 Chip. Tech. Rept. 599, Artificial
Intelligence Laboratory, MIT, Jan, 1980.

6. Mead, C. and Conway, L. . Introduction to VLSI Systems. Addison-Wesley, Menlo Park, Ca., 1980.

7. Weber, H. High Level Design for Programmed Logic Arruys. Proceedings of Fourth Cor.f. on
Computer Hardware Description Languages. May, 1979, pp. 96· 1 01 .

CAL TECH CONFERENCE ON VLSI, Janua~y 1981

