
1. Introduction

Bit-Serial Inner Product Processors in VLSI

Misha R . Durie

Bell Laboratories
Murray Hill, New Jersey 07974

Carver A. Mead

California Institute of Technology
Pasadena , California 91125

155

Many problems in signal and image processing, pattern recognition, and feedback systems
involve models with vector variables. Besides vector addition and multiplication by a scalar, an
inner product of vectors is a basic arithmetic operation in these models. It is computationally
most demanding, so that there is considerable interest in finding ways to speed up its imple­
mentation. Array configurations of simple processors for performing vector and matrix opera­
tions have been extensively reported. A number of ideas can be found in [1), [2], [7], [8] , and
their references.

In this paper we describe a bit-serial pipelined implementation of an inner product proces­
sor, and related interconnections of a number of such processors on a single chip. We argue
that bit-seriaJ computational models are particularly suited for VLSI, because of relatively inex­
pensive communication links and arithmetic processing elements, in terms of the area occupied
on silicon. Sixteen inner product processors, described here, may be easily placed on a single
40-pin chip in today's NMOS technology with a 2 micron lambda. Similar arguments for bit­
serial arithmetic were used in [3]. in a description of a design of a general purpose massively
parallel processor.

Generally, all multiprocessor schemes can be divided into two classes with respect to the
interconnection patterns among processing elements. Static communication links characterize
those array configurations in which a fixed algorithm is executed repeatedly and synchronously
with the input data flow. These structures are especially useful if the input information is being
continuously provided by sampling some real world variables, and the purpose of the processing
is to provide a compressed version of the data, or to transform it into another representation .
Many examples can be found in speech and image processing. This structure and its variations
is examined in this paper. Another, more general class of multiprocessor schemes involves
flexible communication interconnections among the processors through switched networks, (7] .

2. Basic Processors and their Interconnections

An inner product of two n-dimensional vectors, x andy, is defined by

where

,
z - X T y - L XtY t

1-1

XT- (x 1 X2 ••• x,) and YT- (Y1 Y2 · · • Yn]

(l)

We use a convention that all vectors are column vectors, and that T denotes a transpose opera­
tion. A transposed column vector is a row vector. It is assumed here that all the vector ele­
ments are integers. The equation (1) can be rewritten in an iterative form as follows:

CALTECH CONFERENCE ON VLSI, Janua~y 1 981

156

z, - x,y, + z,_l • i-1.2, ... n (2)

zo- 0, z- Zn

There are a number of ways to implement this equation. ranging from a single multiplier­
accumulator combination. to an array of n processors

In the first case, which may be called an iteration in time, the 2n operands are fetched two
at the time, they are multiplied together, and added to the previously accumulated value. Thts
requ1res n steps, assuming that the pipeline registers are used to enable overlapping of the
operations.

On the other side. an iteration in space is characterized by a pipelined array configuration
of n processors that operates on 2n operands simultaneously. and provides a new result every
cycle. The i-th processor IS assigned to the i-th elements of the input vectors, and to the 0-0-st
partial sum, and it produces the i-th partial sum Due to pipelining, a processor may receive
new operands every cycle

Iteration in space will be considered first , because 1t provides the necessary throughput for
large vector sizes. In a VLSI Implementation of this scheme, the cost of arithmetic elements,
and the communication cost of providing 2n operands and interconnecting individual proces­
sors, would be prohibitive if we were to use word-parallel arithmetic.

Bit-serial arithmetic and communication, however, offers a viable alternative for two rea­
sons First, the arithmetic components and the communication lines occupy much smaller area
on silicon. Therefore, a larger number of basic processors may be integrated on a single chip.
Second, the nature of inner product computation requires more bits of precision for larger vec­
tor sizes A fixed-word parallel arithmetic is not suitable for a flexible precision control, since
the overflow conditions may occur for larger vectors, unless a sufficiently large adders are pro­
vided in advance. On the other side, bit-serial addition does not suffer from this problem,
since the precisiOn may be maintained arbitrarily h1gh with the same hardware.

In this text we use b 1 as a bit-delay operator, analogously to z-1 which we reserve for
signal processing applications. Th1s notation is convenient for treating bit-serial systems,
because there may be various delays in a complex array of senal elements, so that a systematic
treatment of path delays is important

Our implementation of a single inner product processing element is shown in Figure 1.

b-l)(, b-3

){.. -3
I~ Ill . .. * ... 0 (~+l(-a)b

j

"l

':1 b-3

f .l.

It consists of a modular bit-serial multiplier, (two's complement, 16-bit), and a single-bit
carry-save adder The input variables x, y, and z enter the processor with the least significant bit
first, and the result starts appearing three bit times later. The computation is synchronized by a
control bit, that is applied simultaneously with the LS bits of the operands. The processor pro­
vides 31 bits of the result. An additional 0 bit is inserted between the result and the LS bit of
the next product. The input operands are padded with 16 zeros to the left of the most
significant bit, so that new operands may be applied every 32 clock cycles.

INNOVATIVE LSI DESIGNS SESSION

Clocking is two-phase, such that phase one controls all data transfers, and all logic func­
tions are evaluated in phase two. The delays b 1 imply shift-register pipeline stages.

There are some variations of the circuit in Figure 1 that are apphcat1on dependent The
delayed tnput variables do not have to be provided at the output in some array configurations
Also , we will show later in the text that the adder may be connected to a pair of multipliers
instead as shown in Figure 1.

The size of a single inner product processor was 2720 by 155 lambda with a linear layout,
and 680 by 620 lambda in a rectangular configuration There was no attempt made to minimize
the size of the basic multiplier cell. Despite th1s, it is feasible to place sixteen such processors
on a 40-pin chip, but the limitation in this and future implementations is not so much the area,
as much as the number of external connections.

"" •

0

.-3
1:~.b dJ b -(,

F\~ . 2

-.3(n- 1)
X. b .,

This brings up the main question· what is the best interconnection among processors on a chip,
which makes further combinations of such chips most flexible?

A linear array, as in Figure 2, has many desirable properties for a number of applications.
The number of pins for a 16 processor combination is less than 40, and the array may grow
arbitrarily large. The expression for an inner product of two large vectors has the same iterative
forrn in terms of inner products of their smaller parts, as in equation (2) . That is, if x and y
are two vectors of size M, we can partition them into K groups of smaller vectors of size n, so
that the inner product xr y may be evaluated as follows:

XT- r c(c{ cl], yT- [d(d[. . . d[I

Z- XT Y- cfdl + crd2 + · · · + cldK

z, - cld, + z,_., i- 1,2, · · · ,K,

ZQ - 0 ,z- ZA

If each partial inner product of size n is computed in a separate chip, then the complete result
is obtained by a linear connection of the K chips. The throughput rate remains the same, one
inner product per 32 clock cycles regardless of the vector sizes. Of course, extra cycles may be
inserted between two products if there is a need for the overflow control in the adder stages. ln
Figure 2 the variables x, , y, are integer elements of vectors x and y, which enter the processor
bit serially. The expression x, b-J means that the integer x1 is delayed by j bit cycles. Notice
that each element of the vectors is delayed by b- 3, with respect to the previous element. This
skewing does not pose any conceptual difficulties, but for practical reasons it would be easier to
apply all elements simultaneously, without any bit delays among the operands. A possible solu­
tion is to include an appropriate shift register delay at the input of each section, but this would
increase the area of the chip.

A better form of a linear array of basic inner product processors, suggested in [8] for
word-paral\e\ arithmetic, is shown in Figure 3. This configuration does not require any delays

157

CALTECH CO NFERE NCE ON VLSI , Ja nua Py 1981

158
Mi s ha R. 8u Pik and Ca PVe P A . Mead

•

T -7
(ii..,+-)C."})b

~----------------------~~
I
..._ -

among the vector elements, and produces the initial product with the delay of only b-6 in a six­
teen processor chip. Here, the adders are organized in a tree structure, and an additional
carry-save adder is added to the chip, with no internal connections. The purpose of this adder is
to allow interconnections of an arbitrary number of chips for larger inner products. The pipe­
line registers are assumed to be included in each adder, and the corresponding delays are shown
externally.

A connection of individual 16 element chips for operating on larger vectors is shown in
Figure 4. Summation of the partial inner products is again done by a tree structure of the
adders, which are obtained from a pool of free adders.

''h

([X~

In Figure 4 each x1 and y1 are 16 dimensional vectors.

This will be the main scheme in further discussion. It is sufficient for applications such as
FIR and IIR filtering, matrix multiplications, vector convolutions and others.

Alternatively, the inner product processors may be connected together in a hexagonal
array suggested in [1] and [2] for matrix operations. In this case, every processor has three

I NNOVAT I VE LSI DESIGNS SESSION

Bit - Se PiaZ I n ner Pr oduct PPocesso r s in VLSI

inputs and three outputs, but a chip with sixteen processors, shown in Figure 5, has two pairs
of four inputs for the vector variables, two pairs of four delayed outputs of the same variables,
and seven inputs and outputs for the result variables. In this case the input variables would be
provided at the outputs delayed by b-3, as in Figure 1. Larger hexagonal arrays may easily be
constructed out of these sixteen processor chips, if each is viewed as a new basic element in a
hierarchy. Even though this approach addresses a very important issue of the data flow through
the network simultaneously with the computation, it requires more complex synchronization of
the input operands.

3. Data Flow Control

I -l'l.
~,b

It was assumed so far that an inner product of two vectors was computed by iterating n
processors in space. The 2n operands were supplied simultaneously bit-serially, and due to
pipelining there was no delay between consecutive results of a series of inner products. There­
fore, the computational throughput was adjusted to match the input data rate at the expense of
more processors. This approach can be extended to matrix products, because they consist of a
number of inner products. First, multiplication of an n-dimensional vector by a matrix, (m by
n), can be accomplished by m arrays of inner product processors, each consisting of n basic ele­
ments. One operand to all arrays is the vector, and the second operand is one row of the matrix
for each array. Each array computes one component of the result simultaneously with others.
Hence the throughput still remains the same as in the case of a single inner product. Similar
structure can be used for a product of two matrices, (m by n) and (n by k), where mk linear
arrays of dimension n compute mk results simultaneously.

In applications of inner product arrays outlined above there is a need for a data flow net­
work that connects the source of operands with the computational structure, and provides for
internal data flow during the operation. This is also important for purpose of matching the
input data rate with the processing throughput. For example, in an FIR filter application a new
data sample may be provided every T microseconds, and a filter has to perform one inner pro­
duct of length N on two vectors. One vector consists of N previous samples, and the other is
composed of filter coefficients. The result of the inner product is output once per period T.
Let xk be the input sample, and zk the output value at time k. Then:

aT - (ao · · ' aN- 1) , XT - (xk Xk-1 Xk- 2 ' ' ' Xk- N+tl

159

CAL TECH CO NFE RENCE ON VLSI, Janua Py 1981

160
Misha R. BuPik a nd Ca PVeP A . Mead

N-1

zk- aTx - ~ a,xk - •

Therefore, both input and output are single integers, but the processor array operates on two
vectors. In addition, the x vector has to be updated every sample time, in such a way that all
the components change their positiOn by one place:

xk+•+l- xk+• , i- 0,1 , · · · ,N-2

with the new sample becoming x4 • This is a shifting operation, suggesting a set of shift regis­
ters for this application. Now, if our inner product processor generates a result in 6. t
microseconds, D.t being much smaller than sampling period T, we can use a smaller processor,

with only No.; basic processors, but there has to be a mechanism for accumulating partial

results within one inner product and cycling through all partial vectors of this smaller size.

This simple example is an illustration of a problem which contains a combination of com­
municational and computational complexity. A standard measure of computational complexity
in this case would indicate that the problem is solvable in O(N) time, and since we can use an
N processor array it becomes an O(l) problem. However, there are additional communication
costs of providing 2N operands, and performing N data exchanges. Also, in a VLSI implemen­
tation of this example it would be only sensible to provide all data movements within the same
chip that contains the inner product processor, so that there is a single external connection for
input and output.

This is typical for many algorithms with vector variables. Each operand interacts with a
number of other operands before the computation is completed. Another example is a convolu­
tion of two vectors of size N, which requires 2N inner products of the same vectors, but one of
them is shifted each time. If there is a reasonable restriction that the data be brought into a
VLSI vector processor only once, which minimizes the number of interactions with the external
world, then there has to be some data storage on the chip with a flexible data exchange scheme.
This issue prompted a hexagonal array approach in [1] and [2] , in which the data storage and
flow takes place in each basic processing element , and the topology of a network is tailored for
the problem.

Here, we examine another alternative that seems to be well suited for bit-serial vector
processing. Consider a shift-register element that has two inputs, horizontal and vertical, and
one output, Figure 6. It can shift the data either horizontally or vertically, as determined by a
shift control signal. Next consider a standard shift-register of length N, say 16, which consists
of N-1 standard cells and one two-input cell, shown in the same figure.

F '- 1· {,
A set of such shift registers can now be connected in a storage array with a two-dimensional
shift capability. To demonstrate an application of such an array with an inner product processor
let us consider an FIR filter implementation.

Suppose the filter is specified at 512 points, and the sampling period is 100 microseconds.
A conservative estimate of the inner product performance is 3 microseconds per product.
Therefore, a 16 processor array is sufficient for computing inner products of 512-dimensional
vectors by iterating in time 32 times. A diagram of this configuration is shown in Figure 7, for

IN NOVATIVE LSI DESIGNS SESSION

Bit - Serial Inner Product Processo~s in VLSI

a smaller array. In order to iterate in time, a bit-serial accumulator is provided. There are two
sets of register arrays, data and filter registers. The data registers are connected vertically in 16
circular groups, and horizontally into a linear array. In a case of a constant filter the filter regis­
ters may be connected in the same way as the data registers, even though there are applications
in adaptive filtering where a different connection would be used. Each register group has a sin­
gle one-bit input and output, the output being used for expansion purposes.

F:.tt~r

The filter coefficients are loaded into the registers one at the time by using horizontal shifting.
During each sample period the computation consists of 32 partial product cycles, and one
memory shift cycle. Each partial product cycle results in a 16 component inner product, during
which the registers are being shifted vertically. This provides bit-serial operand streams to the
inner product processor, and simultaneously prepares new operands for the next cycle. At the
same time the accumulator adds previous partial product to the one being computed. The last
partial product cycle produces the result that is then shifted outside. In the next step a memory
shift is done by shifting registers horizontally. The first register receives a new sample from the
external source while it is transferring its content to the next neighbor to the right. At the same
time the accumulator is cleared for the next round of partial product cycles. This sequence of
steps is repeated for each new input sample.

This example is indicative of tradeoffs that have to be made in a practical design of array
schemes for vector processing. The goal is to minimize the silicon area, while matching the pro­
cessing speed with the available input/output data rates. Here, the area of two-dimensional shif\
register arrays was much smaller than an array of 512 inner product cells that could be used for
the same computation. However, if the input sampling rate was on the order of 3 microseconds
and the filter was specified with the same number of points, then a large processor array would
be used. In addition, if the input rate was even larger, two arrays would have to be used, each
operating on alternate samples.

A two-dimensional shift register array may be used in a similar way for other vector and
matrix operations. An alternative to this approach is to use standard memory arrays with a spe­
cialized memory access facilities. An example is given in (9].

161

CALTECH CONFERENCE ON VLSI , January 1981

162
Misha R. Bu Pik and CaPVe P A. Mead

4. The Multiplier

There are a number of reported bit-serial multipliers in literature (4], [51, [6]. Most of
them preserve only N most significant bits of the result. We have devised yet another
configuration, which preserves all 2N-l bits. This is important for inner product computations,
where a large number of individual products are accumulated.

If two integers are given in a binary representation, then they can be viewed as vectors
whose components are in the set [0,1) . Then, their product is a vector whose elements are
obtained by a convolution of the two operand vectors. Alternatively, a polynomial representa­
tion with a delay variable b- 1, can be used for representing integers for bit-serial arithmetic. A
convolution of two vectors is equivalent to a polynomial multiplication, if the vector elements
are equated with the polynomial coefficients. Let x and y be two N-bit integers, represented as

N-1 N-1
X - ~ x,b-' , y- ~ Y;b-'

The product polynomial is given by
2N- 2 k

z - L zk b- k , zk - 1~ X,Yk- •
k-0 ;=>

It is interesting to note that each zk is an inner product of two binary vectors, so that a multi­
plier design becomes an exercise in configuring a regular array structure for inner product com­
putation. In order to derive such a structure, we rewrite the result polynomial as:

V•-2
z - L (z~ + z~') b- 1.

A-0

I !..±..LJ-1
2

ZA - L y1XJ..-r
r- 0

These two expressions can be wr1tten in an iterative way, such that they map into a linear pipe­
lined array of N sections. The j-th section computes the following:

• . I z1 -x1yk+z1+lb- , j~k
• " -1

z1 - y1 xk + ZJ+l b ' }<k

k- 0,1, · · · N-1 , j- 0,1, · · · ,N-1 , z1 - z; + z;·

The section 0 provides the product polynomial, with zob-1 being the least significant bit. Notice
that the additions in the above expressions are arithmetic, with a carry bit.

A diagram of a single section of the multiplier, and the connection of the sections, are
shown in Figure 8. The operands are applied on two single bit buses, x and y, one bit per
cycle. The control bit is provided simultaneously with the LS bits, and it advances from the 0-th
section to the remaining stages synchronously with the bit rate. Its purpose is to enable x and y
latches in each section. In the i-th cycle, it deposits i-th x and y bits in the i-th latches. Each
section computes two partial sums, z,· and z;·. Carry-save adders add together three values, a
product of two bit values, previous carry bit, and the delayed partial sum from the next section.
The 0-th section also contains an adder for forming the final result. Finally, two's complement
multiplication is obtained by applying a special "subtract" signal , simultaneously with the most
significant bits of the operands, XN- l and YN- l· This has the effect of converting all adders to
borrow-save subtractors at this time, (except in the last section) . In this implementation, it
takes 2N-1 steps to perform a multiplication of two N bit numbers.

The floor-plan of a single multiplier section looks very much like the diagram in Figure 8.
All signals were chosen to run horizontally, so that a multiplier with an arbitrary number of bits
can be constructed in many ways, by abutting sections on two edges only.

INNOVATIVE LSI DESIGNS SESSIO N

Bit-Se~iaL Inne~ P~oduct P~ocesso~s ~n VLSI

-1
b

5. Conclusion

I -1

i:j .. , b

·- · 1-1 ~·~------------~ Co~ ·b

If ,,
H I -I

~irl b

A bit-serial approach to computations of vector inner products offers many advantages
over word arithmetic. The size of basic processing elements and communication links is much
smaller, and the array configurations are easy to implement. The slower rate of operation of a
single multiplier-adder combination is offset by a much higher throughput rate of a large
number of processors. A single element has been designed and tested, and a sixteen processor
combination with a tree of adders is under way. The approach is especially useful for real-time
signal processing tasks.

6. Acknowledgements
We are grateful to David Hagelbarger for suggesting the structure of the multiplier. Also,

we would like to thank Sandy Fraser and Mike Maul for making the chip production possible.

7. References

I. C. A. Mead and L. A. Conway, Introduction to VLSJ Systems, Addison-Wesley, 1980, 263-
330.

CALTECH CONFERENCE ON VLSI , Janua~y 1981

164

Misha R. BuPik and Ca PVe P A. Mead

2. H. T. Kung, The Structure of Parallel Algorithms, Carnegie-Mellon University, August
1979.

3. K. E. Satcher, "Design of a Massively Parallel Processor", IEEE Trans. Comput., Vol. C-
29, pp. 836-840, Sept. 1980.

4. E. K. Cheng and C. A. Mead, "A Two's Complement Pipeline Multiplier", Proc. /CASSP,
Apr. 1976.

5. R. F. Lyon, " Two's Complement Pipeline Multipliers" IEEE Trans. Commun., 418-425 ,
Apr. 1976.

6. L. B. Jackson et al., "An Approach to the Implementation of Digital Filters", IEEE Trans.
Audio Electroacoust., vol. AU-16, pp. 413-421 , Sept. 1968.

7. Special Issue on Parallel Processing, IEEE Trans. Comput., vol. C-29, Sept. 1980.

8. E. E. Swartzlander et al., "Inner Product Computers", IEEE Trans. Comput., vol. C-27, pp.
21-31, Jan. 1978.

9. K. E. Satcher, "The Multidimensional Access Memory in ST ARAN", IEEE Trans. Com­
put. , vol. C-26, pp. 174-177, Feb. 1977.

INNOVATIVE LSI DESIGNS SESSION

