
A STRUCTURED APPROACH TO VLSI LAYOUT DESIGN 

ABSTRACT 

M.S.KRISHNAN 

XEROX Corporation 
LSI Development A3· 7 4 
701 S.Aviation Blvd. 
El Segundo, CA 90245 

413 

A new approach to the VLSI layout problem is proposed that produces a 
structured floor plan for an arbitrary network of interconnected processing 
elements. It is based on extracting a minimum spanning tree from a given 
representation of a computation network and using an efficient, structured layout 
scheme for this minimum spanning tree. Techniques to lay out trees as arrays of 
layout slices are presented. It is assumed that the nodes of a network are identical 
in their layout size and connectivity. This method is valid at any level of a VLSI 
design since these nodes may represent gates, cells or complex macros. An 
application of this approach to modified tree networks is described. Other useful 
applications of the method are mentioned. 

CALTECH CONFERENCE ON VLSI, Januapy 1981 



414 
M. s . Kr>ishnan 

1. INTRODUCTION 

A significant portion of a VLSI chip of any reasonable complexity is consumed by 
the communication paths among the various macros comprising the chip. This 
situation is further aggravated by several factors: 
a) Decreasing feature sizes. e.g. transistors and wires, which cause 

communication delays to decrease non-proportionately with gate delays. 
b) Presence of random logic with the attendant interconnection that is also 

irregular. 
c) Lack of adequate design aids that guide a designer along a structured, 

hierarchical design sequence that is also streamlined to provide masks within 
a short time. 

Traditionally, the two major phases of digital system design, namely logic design 
and physical , or more appropriately geometric design, have been treated as 
separate. sequential operations. This methodology was generally adequate before 
the LSI revolution. With the enormous computing power and hence complexity 
present in a network of processors in one chip, the separation of these two tasks 
tends to overlook the effects of one on the other. It is essential for a VLSI designer 
to be able to evaluate the effects of his logic design on the layout and vice versa 
early enough to incorporate them into his design. Yet there is a lack of adequate 
design aids for evaluating the potentials of alternative chip designs carried 
through the logic design to the floor plan of the chip. 

The major goal of the work described in this paper is the development of design 
aids that will produce structured chip layouts that are efficient in area and are 
easy to generate. The problem of regular and / or area-efficient layouts for VLSI 
has generated considerable interest recently [7]. The Bristle Blocks approach [6] 
attempts to develop cells that have built-in stretching points so that neighboring 
cells may be made to conform to the same pitch . Leiserson [2] describes a divide· 
and-conquer approach to the layout problem wherein any planar graph that 
satisfies the conditions of the separator theorem of Tarjan and Lipton may be 
recursively bisected by removing edges until subgraphs realizable as rectangular 
layouts with the desired aspect ratio are obtained. These are then recursively 
connected by restoring the deleted edges. Brent and Kung [1] proposed a regular 
layout tor a carry-lookahead addition scheme. 

The present work attacks the problem through the creation of regular "layout 
slices" for a few commonly found computation structures .. tree, cube, hexagonal 
array etc. and treating a given computation network as a composition of instances 
of these structures. Thus the tasks of logic design and geometric design are being 
absorbed into one wherein the impact of one on the other can be handled 
systematically. 

DESIGN DISCIPLI NES SESSION 



A StP uctuPed AppPoach to VLSI Layo u t Design 415 

Section 2 describes some regular layout schemes for trees proposed in the 
literature. Section 3 presents some new layout schemes that are implementable as 
arrays with useful properties. These schemes are applied to modified tree 
networks in Section 4. Section 5 describes an algorithm to generate the floor plan 
for an arbitrary computation network of interconnected processors. Some 
potential applications of this method are listed in Section 6. 

2. LAYOUT SCHEMES FOR TREES 

A structure that has a wide range of applications from multiplexors, decoders etc. 
to multiprocessors is a tree network. A regular layout for the carry chain 
computation in an adder has been proposed [1]. It is actually a set of trees with 
common inputs and is illustrated in Fig. 1. Its area is O(nlog n) where n is the 
number of leaf nodes. 

C6 C5 C4 C3 C2 C1 

~--+CARRY 
PROCESSOR 

G8,P8 G7,P7 G6,P6 G5,P5 G4,P4 G3,P3 G2,P2 G1,P1 

Fig. 1. An O{nlogn) layout for a carry lookahead adder tree 

CALTECH CONFERENCE ON VL SI , Jan uaPy 1981 



416 
M. S . Kr>ishnan 

An H-tree layout for binary trees has been proposed [9] that is more space
efficient. The H-tree requires O(n) area and is shown in Fig. 2. 

I ~~---~n-----+-~ ... 1 

Fig. 2. The H-Tree Layout for a Complete Binary Tree 

Several observations can be made on these layout schemes : 

a) The tree layout scheme of Fig. 1 has all the leaf nodes at one end and the 
output nodes at the other. Thus data travels in one direction only and a total 
distance proportional to log n. 

b) The H·tree scheme has leaf nodes spread throughout the interior as well as the 
periphery of the square area. The data flow alternates between the two directions 
from level to level. The total distance traversed by data from the leaf nodes to the 
output, using the unit shown in Fig.2, is : 

for n = 22k leaf nodes 

for n = 22k + 1 leaf nodes 

This delay is proportional to sqrt n. 

DESIGN DISCIPLINES SESSION 



A StPuctuPed App Poach to VLSI Layo u t De s ign 
417 

c) Both schemes grow in both directions as the tree expands. In both, the number 
of nodes in either direction is not constant and varies across the layout. Therefore 
neither scheme is suitable for realization of a tree as a one-dimensional array. 

3. LAYOUT SLICE SCHEMES FOR TREES 

We develop, in this paper, a structured layout scheme as a one-dimensional array 
of "layout slices". The new layout technique places the leaf nodes along the 
edges for ease of routing , minimizes the data propagation time so that the latency 
time of the tree as a segment in a pipeline is minimized. The ease of access to the 
leaf nodes is critical in applications where not only the root but also the leaf nodes 
of the tree communicate with other macros on the chip. 

3.1 BINARY TREES 

An algorithm to generate the layout for a complete binary tree is g iven below. The 
numbering notation used in this paper for levels of nodes is shown in Fig. 3. 

-Level3 

- Level 2 

12 
\ -Level 1 

@ -Level 0 

Fig . 3. A Logical Binary Tree with Eight Leaf Nodes 

CA LTECH CONFERE NCE ON VLSI, Janua Py 1981 



41 8 
M. s . KPishnan 

ALGORITHM 1 (Algorithm for the layout of a binary tree) : 

Let the binary tree have n = 2k leaf nodes for some integer k. The two main tasks 
in tl').e layout process are placement of the nodes and interconnections among 
them. 

1. PLACEMENT 

a) Traverse the tree in order. 
b) Group the nodes in the traversal into pairs. 
c) Assign every pair obtained above to a layout slice. 

2. INTERCONNECTION 

a) The connections to the leaf nodes (level 0) are straightforward since they 
receive external inputs. 

b) For nodes at higher levels in the tree, the level number of a node in a given 
slice can be determined in a simple manner. For nodes at level1, the inputs 
are from within the same slice and the slice immediately to its right. For 
nodes at level i, i > 1, the inputs are from the slices 2i-2 positions to the left 
and 2i·2 positions to the right. o 

The algorithm is illustrated for a tree with n = 8 in Fig. 4. Step 1 of the algorithm 
yields (1 ,9) (2,13) (3.1 0) (4, 15) (5, 11) (6,14) (7, 12) (8) . Step 2 can be observed from 
Fig.4 which shows the realization of the tree. 

2 

1 I 1 I 

L _I 
I 2 I 

L _j 

I 

_j 

I 

I 4 I 
L _j 

r--, 
I 
I 

I 

~--------------------------n --------------------------~ 

Fig . 4. Realization of a tree as an array of "layout slices" 

DESIGN DISCIPLINES SESSION 



A StPuctuPed AppPoach to VL SI Layout Design 
419 

The following lemma determines the number of slices required for such a layout and 
the bounds on the degree and eccentricity of a slice. 

LEMMA 1 : 

A complete binary tree with n leaf nodes can be realized in area O(n) as an array 
of n layout slices where each slice contains exactly two nodes with a) at most four 
wires connected to it and b) at most log n · 2 wires passing around it without 
connection, where a wire is an interconnect between two nodes in the tree. 

Proof: 

We prove the first part of the lemma by induction on the number of leaf nodes. For 
a complete tree, n = 2k for some integer k. For n = 2, we need two slices as 
shown below: 

Consider a tree with 2m leaf nodes. 
The total number of nodes in the tree = 2m + 2m-1 + ... + 21 + 20 

= 2m+ 1 . 1 

= 2(2m) . 1 
= 2(n) · 1 

This shows that the nodes of the tree can be assigned to the 2m slices, two nodes 
to a slice, such that exactly one half of one of the slices is unused. 
We now apply induction to a tree with 2m+ 1 leaf nodes. Let 

R 

T 
m+ 1 /~ 

be a complete tree with 2m + 1 leaves where R is the root node and T L and T R are 

the left and right subtrees of T m + 1 with 2m nodes each. By the induction 

CALTECH CONFERENCE ON VLSI, JanuaPy 1981 



420 
M. S . Kr>ishnan 

hypothesis, both T L and T R have structured layouts with 2m slices each. But we 
have shown above that the layout for T L has a slice, say S, that has an unused 
node. Let R be assigned to this unused slot and connected to the roots of T L and 

T R· ··This results in a layout forT m + 1 as an array of 2m+ 1 slices with each slice 
containing two nodes. An interesting property of the placement strategy is that 
every slice has exactly one leaf node and one node from a higher level. This 
follows from the in-order traversal of the tree. Thus the area of the layout, using 
any choice of units is O(n). The maximum propagation length from the leaf nodes 
to the root is n/ 2. The maximum number of wires across any vertical cross 
section of the layout is log n. 

b) Let the levels of the tree be numbered with the leaf nodes at level 0 and let I(P) 
denote the level of node P. As mentioned above, one of the two nodes in a slice is 
from some level > 0. Let P be such a node. There can be no wires passing around 
the slice containing P that connect to to a node at level I(P) or less since, by 
construction , none of the left sons of node P are to the right of P. The maximum 
number of wires passing around a slice occurs for the case I(P) = 1 for which 
there are log n - 1 levels above it. However, the root node is not connected to any 
other slice and hence there are at most log n - 2 wires passing around a slice. 
The number of wires connected to a slice is maximum when I(P) ~ 1 and can be 
seen to be four. o 

The number of wires passing around a slice was treated specifically above to 
bound the width of the routing channels although these wires may be run through 
the cells. Only one half of one slice is unused. Note in Fig. 4 that there are at most 
log 8 - 1 i.e. 2 wires passing around a slice. The output from a node at level i 
passes around 2(i-1) - 1 slices using this arrangement of nodes. 

3.2 TREES WITH LARGER FANOUT 

The above scheme for binary trees can be generalized to any k-ary tree as stated 
in the following lemma. 

LEMMA 2 : 

Any k-ary tree where each node has k inputs and one output, with n leaf nodes 
can be realized in area O(n) as an array of n layout slices where each slice 
contains at most two nodes with a) at most k + 2 wires connected to it and b) at 
most log n - 2 wires passing around it without connection. 

DESIGN DISCIPLINES SESSION 



A StPuctuPed AppPoach to VLSI Layout Deaign 421 

Proof: 

The construction of a k-ary tree layout is similar to that of a binary tree. At each 
level i, a node is placed in the same slice as its rk/21 th input for i = 1 and in the 
slice ki-2 positions to the right of its rk/21 th input for i>1 so as to place at most 
two nodes in every slice. The properties of this layout follow from arguments 
similar to those for Lemma 1. o 

The placement criterion stated above is illustrated for a ternary tree with n = 9 in Fig. 
5. Note that this criterion is also true for a binary tree. 

I 
_ _I 

I I 

L- _I L 

Fig. 5. Ternary tree layout as array of slices with two nodes each 

The above layout schemes have two noteworthy properties: 

a) There are two distinct types of slices. characterized by the 1/0 connections of 
their nodes. These can be represented for the binary tree as 

Et 
I I 

Thi 
L _ _l 

Although SA can be obtained from s8 , we choose to distinguish them in the 
following. These two slice types alternate in the array. 

CALTECH CONFERENCE ON VLSI , JanuaPy 1981 



422 
M. S . Kr>ishnan 

b) The number of nodes in a slice is not restricted to 2 as described in Lemmas 1 
and 2, but can be any power of 2. 

Some useful implications of these properties are stated in the following lemma. 

LEMMA 3 : 

A tree network can be realized as an array of two distinct types of slices, denoted 
by SA and Sg, where SA consists of a left subtree and its parent node, say F, and 
Sg consists of the right subtree of F and an ancestor of F. The array realization is 
an alternating sequence of these two slice types. There are log n + 1 different 
realizations of the tree, characterized by the number of nodes in a slice, where n is 
the number of leaf nodes. 

Proof: 

The basic unit in a binary tree is a node along with its two children. Out of the 
three ways of assigning these three nodes to two adjacent slices, the ones that 
yield the minimum inter-slice communication assign the parent node and one of 
its subtrees to be in the same slice as its parent. We have arbitrarily chosen the 
left subtree to be in the same slice as its parent. The sequence SA,SB by this 
definition, expands the left subtree contained in SA to the next higher level while 
the sequence Sg,SA inserts the right subtree of the parent node contained in s8. 
The result follows from an inductive argument on the sequence of slice types. 
With n = 2m leaf nodes, there are 2m+ 1.1 nodes in the tree. A 31ice may contain 2i 
nodes, 1 ::; i s m + 1. Each of these produces a distinct realization and hence 
there are m + 1, or equivalently, log n + 1 different realizations of the tree. 

It should be pointed out that the layout slice arrangement is amenable to a gate 
array in which a "gate" may be a layout slice and the number of interconnecting 
channels may be bounded as above. 

3 .3 AN ALTERNATIVE REALIZATION OF A BINARY TREE 

Another layout slice scheme for complete binary trees that uses a single slice type 
is briefly described below. Each slice contains a basic unit of the tree. 

LEMMA 4 : 

A complete binary tree with n leaf nodes can be realized as an array of r(2n·1 )/31 " 
identical layout slices where each slice contains a parent node and its two 
children. with a) at most five wires connected to a slice and b) at most log n · 2 
wires passing around it without connection. 

DESIGN DISCIPLINES SESSION 



A St Pu ctuPed AppPoach to VL SI Layout Design 
423 

Proof: 

a) As shown in Lemma 1, the total number of nodes in a tree with n leaf nodes is 
2n-1. Assigning a parent node and its two children to a slice results in r2n-1 /31 
slices and at most five wires connected to a slice. 
b) The bound on the number of wires passing around a slice can be proved by 
induction on the number of leaf nodes. o 

This scheme also has the leaf nodes at the edges of the layout and is illustrated in 
Fig. 6 for n = 4 and n = 8. It can be observed that the slices are fully used when m is 
odd and there are exactly two unused slots when m is even, where n = 2m. 

2 
n = 2 (m even) 

3 
n = 2 (m odd) 

Fig. 6. An alternative array realization of the tree with one slice type. 

4. MODIFIED TREE NETWORKS 

Let us consider the applicability of the array-realizable layout schemes to modified 
tree networks. Such a network of considerable interest is a carry-save adder that 
adds a set of n-bit numbers using standard full/half adder cells with the carry 
propagation deferred to the very last stage. The number of levels in this tree is 
determined by the type of basic adder cells used in reducing the given h n-bit 
numbers to two rows of bits before performing a carry propagation . For instance, 
using full/half adder cells for each node of the network one would require 
approximately logsh levels in the tree excluding carry propagation, where s :::::: 1.5 
[10]. It suffices to say that the number of levels· in the tree for a given type of adder 
cell can always be bounded. 

An assignment of full / adder cells to add six 3-bit numbers is shown in Fig. 7. The 

CALTECH CONFERENCE ON VLSI, Janua Py 1981 



424 H. s . Krishnan 

horizontal lines separate the successive levels in the tree. The numbers within 
circles are the unit numbers of the adder cells and the numbers within the adder 
cells (boxes) represent the outputs of other adder cells from previous levels. There 
are four levels in the tree and the carry propagation is done at the fourth level. 

Addends 

6 

7 

8 8 

9 9 (9) ww 
Carry propagation 4§] 

11 11 

stage 12 e 
6-bit result---+ 15 14 13 10 7 

Fig. 7. Carry-save addition of six 3-bit numbers using full/half adders 

The tree network for this adder scheme is shown in Fig . 8. Let us assign the nodes 
in the tree to layout slices as follows: 

DESIGN DISCIPLINES SESSION 



A Structured Approach to VLSI Layout Design 
425 

Define a slice for each leaf node. Assign a non-leaf node P to the same slice as its 
middle input if P is a full adder and to the same slice as its right input if P is a half 
adder. Note that there is at most one node from any given level in a slice. The 
placement of the carry propagation stage cells is explained below. The effect of 
this assignment strategy is that in any slice there is at most one node from any 
given level. A more rigorous method for obtaining the layout slices for general 
networks will be decribed in Section 5. We can now state the following for such an 
adder tree implementation using layout slices: 

HALF ADDER 



426 
M. s . Kr-ishnan 

LEMMA 5: 

An adder tree network that adds h n-bit words using carry-save addition with 
full/half adder cells can be realized in area O{nlogsh) as an array of n + rh/21 
slices with each slice containing at most rlogsh1 + 1 nodes and at most 
5 rlogsh1 + 4 wires connected to it, where s ~ 1.5. 

Proof: 

As discussed above, the upper bound on the number of levels in the tree using full 
adders is logsh· For the carry propagation, we need at most (n-1) + rh/21 more 
levels where the term rh /21 accounts for the fact that the sum of a pair of n-bit 
numbers will need an additional bit for overflow and so the sum of the h n-bit 
numbers may have up to n + rh/21 bits. For simplicity, we allow these additional 
rh/21 bits of the sum to have separate slices for the carry propagation stage. 
Thus we need at most rlogsh1 + 1 nodes in each slice including the carry 
propagation stage. Each of the nodes in a slice has two or three inputs and two 
outputs. However, from the assignment of the nodes to slices, we are guaranteed 
that at least one node in every slice has at least one input from within the same 
slice. Thus there are at most 5(rlogsh 1 + 1) · 1, i.e. 5rlogsh 1 + 4 wires 
connected to any slice. The area of the layout is therefore O(nlogsh). o 

The dotted lines in Fig. 8 indicate the slices used in the realization of the tree. 

5. A FLOOR PLAN GENERATION APPROACH 

In th is section an approach to develop the floor plan of an arbitrary computation 
network of interconnected processors is outlined. The task of generating a floor 
plan is to lay out the individual nodes and the interconnections among them in a 
rectangular area satisfying the specified design constraints like line length, width 
and number of crossovers. The availability of alternative layout schemes is bound 
to suggest alternative logic realizations at any level of a hierarchical design. The 
layout schemes described above are not limited to any particular logic level, e.g. 
transistors, gates etc. Thus various multiprocessor architectures as well as 
different multiplication schemes may be tried with the same abstraction. The 
elementary nodes themselves may in turn be laid out in detail at a lower level to 
the desired degree of optimization. 

DESIGN DISCIPLINES SESSION 



A StPuctuPed AppPoach to VLSI Layout Design 
427 

5.1 DESCRIPTION OF THE METHOD 

The approach consists of the following steps: 

a) Obtain a weighted network of processing elements with appropriate weights 
assigned to the edges. These weights may represent the required degree of 
proximity of the two nodes connected by that edge. 

b) Extract a minimum spanning tree for the network i.e. a tree that spans all nodes 
of the network and has the minimum total weight for any tree. The designer can 
force critical interconnections into this tree by assigning appropriate weights to 
these edges in the original network. The resulting minimum spanning tree will 
contain the part of the original network that is critical in terms of topology 
constraints. 

c) Lay out the m1n1mum spanning tree obtained using the regular tree layout 
schemes described above. 

d) Realize the original network by restoring the remaining edges. 

The implementation of the above method is illustrated in Fig . 8. The leaf nodes are 
at one end and each leaf node defines a slice. The middle input to a full adder and 
the right input to a half adder have been assigned weight 0. The effect of this 
criterion on the assignment of nodes to slices is evident although the actual 
strategy for the assignment of weights to the edges is not relevant to the proposed 
floor plan method. 

The layout of a bigger version of a carry-save adder macro generated using the 
above method is shown in the accompanying plate which shows the overall floor 
plan of the macro and the internal layout of an adder cell. There are five 6-bit 
operands and the sum is truncated to 6 bits. The leaf nodes are in the top row 
and the output nodes in the bottom row. Note that the middle row consists of one 
type of adder cell while the top and bottom rows contain a smaller adder cell 
although the above method was developed primarily for identical cells. The inputs 
and outputs of a cell are on opposite faces of a cell. A cell layout or its mirror 
image may be used in a slice. 

5.2 INCOMPLETE TREES 

Although the layout schemes described above have assumed complete or nearly 
complete trees, incomplete or unbalanced trees may still bring useful layout 
structure to the original network. Fig. 9 illustrates this with incomplete trees laid 

CALTECH CONFERENC,E ON VLSI, JanuaPy 1981 



428 

LAYOUT OF ADDER CELL 

LAYOUT OF ADDER MACRO 

DESIGN DISCIPLINES SESSION 

M. s . Kr>iahnan 



A Structured Approach to VLSI Layout Design 429 

out as arrays. The interconnections among nodes are weighted , with 0 indicating a 
closer required proximity than 1. External inputs are shown unweighted and 
undirected. Note that in (b), node 3 is not a conventional leaf node. 

0 1 
r- l r- l r l r l 

(b) 

Fig. 9. Examples of layouts for incomplete trees 

CALTECH CONFERENCE ON VLSI, January 1981 



430 M. s . K-,.ishnan 

5.3 PROPERTIES OF THE PROPOSED FLOOR PLAN APPROACH 

1) It is more general than the divide-and-conquer method underlying Leiserson's 
scheme in that any network, not necessarily planar, can be handled as a minimum 
spanning tree problem. 

2) It yields a regular, array-realizable layout with known bounds for the number of 
processors in a slice and the number of wires beween slices which provide for 
uniform spacing for routing purposes. 

3) There are efficient, polynomial -time algorithms to extract mtntmum spanning 
trees [12]. More importantly, alternative minimum spanning trees can be easily 
obtained using cyclic interchange methods [11] making it possible to 
systematically generate alternative floor plans. A useful implication of this is that 
the design hierarchy may be reevaluated in the light of the floor plans generated, 
resulting in a modified computation network. Thus the processes of logic design 
and physical design can be integrated to simplify the time-consuming and often 
error-prone task of a detailed layout for VLSI chips. 

4) An apparent disadvantage of this approach is that for an unbalanced tree the 
slices are not utilized efficiently. However, as mentioned in the previous section, 
regularity in layout can still be imposed on unbalanced trees. Also, at the mask 
generation stage, the unused portion of a slice may be eliminated so that the 
unused part of a slice does not consume any power. 

6. CONCLUSIONS 

Some layout schemes for tree networks and a possible solution to the floor plan 
generation problem using such schemes were proposed above. Possible 
directions for pursuing this approach are mentioned in this section: 

1) Efficient layout slices for other commonly used structures e.g. cube, hexagonal 
array etc . may be developed such that different types of layout slices are 
compatible in terms of number of wires and / or number of processing elements in 
a slice. The goal here is similar to that of the Bristle Blocks project [6]. Thus a 
given network may be decomposed as a set of these structures which can then be 
laid out individually using efficient layout slices for each of these structures and 
interconnected. This compares favorably with the arbitrary division approach used 
in the divide-and-conquer method. For instance, the slice concept applied to a 
cube network is demonstrated in Fig. 10. 

DESIGN DISCIPLINES SESSION 



A St ructur ed Approach to VLSI Layout Design 
431 

Fig. 10. Cube Interconnection realized as a regular array of slices 

Note that each slice for the cube also contains two nodes similar to a tree slice and 
there are two slice types. 

2) There are no efficient methods to extract minimum spanning trees with special 
constraints such as a bound on the degree ~f a node etc. This problem can be 
viewed differently : Are there useful computation networks that are modifications 
of a balanced tree and are realizable as arrays of slices within the bounds 
discussed above? The adder trees of Section 4 are examples of such networks. 

3) A natural extension of the layout schemes described above would be to tree 
structures where the nodes are not identical in their sizes or connectivities. The 
selection of a basic slice or slice types would be critical to an array realization. 

4) Since the processing elements within a slice may be connected internally, 
specific optimizations both in layout and in logic design are possible. For example. 
for a layout slice where a leaf node communicates its carry signal to the node 
within the slice, e.g. slice SA above, it is possible to use a complemented carry 
signal thereby eliminating two inverters and saving their area and power. However, 
such optimization is meaningful only in situations where it does not cause a 
proliferation of layout slice types. This may be treated as a problem of 
characterizing the interconnection pattern among the slices. 

ACKNOWLEDGEMENT 

The author is thankful to the Xerox Corporation for their support during this 
research. 

CALTECH CONFERENCE ON VL SI, January 1981 



432 
M. s . Kr>lshnan 

REFERENCES 

1) Brent, R.P. and Kung, H.T., "A Regular Layout for Parallel Adders", Tech. 
Report, CMU-CS-79-131, Dept. of Computer Science. Carnegie Mellon 
University. June 1979. 

2) Leiserson, C.E., "Area-Efficient Layouts for VLSI" , Tech. Report, Dept. of 
Computer Science, Carnegie-Mellon University, August 1979. 

3) Bentley, J.E. "Multidimensional Divide-and-Conquer" , Comm. of the ACM, Vol. 
23, No.4. April 1980, pp 214-229. 

4) Rowson , J.A. '' understanding Hierarchical Design" , Ph.D thesis, Dept. of 
Computer Science, Caltech. April1980. 

5) Browning, S.A. , "A Tree Machine" , Lambda, Second Quarter, 1980, pp 32-36. 
6) Johannsen, D .. "Bristle Blocks: A Silicon Compiler", Caltech Cont. on VLSI , Jan 

1979, pp 303-310. 
7) Marshall, M .. "VLSI pushes super-CAD techniques'', Electronics, July 31 , 1980, 

pp 73-80. 
8) Mead. C.A. and Conway, L.A .. "Introduction to VLSI Systems". Addison-Wesley, 

Mass. 1980. 
9) Rem, M .. "Mathematical Aspects of VLSI Design", Caltech Cont. on VLSI , Jan 

1979, pp 55-63. 
10) Stenzel , W.J. et al, "A Compact High-Speed Multiplication Scheme". IEEE TC. 

Vol. C-26, No. 10, Oct 1977, pp 948-957. 
11) Deo. N .. "Graph Theory with Applications to Engineering and Computer 

Science". Prentice-Hall, Englewood Cliffs, N.J. , 1974. 
12) Cheriton. D. and Tarjan. R.E. , "Finding Minimum Spanning Trees" , SIAM J . of 

Computing. Vol. 5, No. 4. Dec 1976, pp 724-742. 

DESIGN DISCIPLINES SESSION 


