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This paper outlines the considerations and design of a four qua
drant analog multiplier using switched capacitor (SC) techniques. The 
design algorithm for accomplishing the multiplication is described. 
Implementation of the algorithm is then presented. The predicted 
accuracy of the multiplier is given and compared to preliminary bread
board measurements. The multiplier described is presently being fabri
cated as an integrated circuit on a university multichip project using 
double-poly MOS technology. 
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INTRODUCTION 

Practical analog signal processing using integrated circuit tech 

nology has been made possible by the application of SC techniques . 1 

The accuracy of analog signal processing systems can approach 0.1 % 

which is equivalent to approximately 10 bits of digital information. 2 

The primary analog signal function which has been implemented using 

SC techniques is the filter. 3 Some non-filter applications have also 
been considered such as oscillators, 4 diodes, 5 and digital - to-analog 

converters. 6- 9 Some work has been done in the area of modulators, 10 

but little if any consideration has been given to a true analog 
mu 1t i p 1 i e r. 

The objective of this paper is to take the proven techniques of 

SC circuits and apply them to the development of a four-quadrant SC 

multiplier. The result is a very useful analog signal processing 

component which is compatible with MOS technology . The speed 

of such a multiplier would not be expected to match the integrated bi
po lar analog four-quadrant multipliers presently available11 because 
of the use of sampled data techniques. Preliminary results show 

that it is possible to eliminate many of the multiplier errors and to 

avoid the extensive fine tuning and external components that must 

accompany the use of bipolar analog four-quadrant multipliers . One 
useful technique that can be accomplished in SC circuits is to sample 

the offsets and cancel their contribution during the next clock phase 

period. This technique is considered as a means to reduce the errors 

associated with the analog, SC multiplier. 

The paper will first consider the principles of operation by which 

the SC multiplier will be designed. These principles of operation wi l l 
then be used to develop an implementation of the multiplier. An analy
sis of this implementation will provide the predicted performance 

which will be compared to breadboard results. This will be fo ll owed 
by the present status of this deve l opment and the future steps that wi ll 
be taken. Brief consideration will be given to the imp l ementati on of 
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Conside~a t ions fo~ an Analog Fo u~ Quad~an t SC Mul tipl ie ~ 

this multiplier using MOS technology which is presently under construc
tion . 

PRINCIPLE OF OPERATION 

In seeking a multiplier compatible with MOS technology, one might 
ask why not simply replace the bipolar junction transistors in the 
bipolar multiplier with MOS transistors. In theory, this approach pro
posed by the question should work. However, in practice there are 
several problems. The bipolar multiplier works on the principle of 
current ratioing using the transconductance of the bipolar junction 
transistor. Unfortunately, the MOS transistor has much lower trans

conductance and larger offset voltages leading to a four-quadrant 
multiplier having large errors. While the transconductance of the MOS 
transistors could be increased by using very large devices, the offset 
voltages would create too much error. With the concepts of SC circuits 
in mind, a new approach was sought which would take advantage of the 
SC methods to provide improved performance. 

The operating principle chosen for the MOS multiplier can be 
explained by the block diagram in Fig. 1. This block diagram is used 
to represent the multiplier which will be designated as the operation
al multiplier. The operational multiplier has three inputs and one 
output. Two of the inputs are designated as multiplicands and the 
third input is called the divisor. The principle of operation can be 
simply stated as follows. Operate simultaneously on one of the multi
plicands and the divisor in such a manner that the divisor is equal 
to the remaining multiplicand times a constant. For example, suppose 
that the operated value of the divisor C is equal to the multiplicand 
B and is given as 

Operated value of C = KC = B ( 1 ) 

If the remaining multiplicand, A, is operated on in the same manner as 

JlO 
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Fig. l - Block diagram of an operational multiplier. 
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Fig. 2 - Counter implementation of the operational multiplier. 
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the divisor C then we can write 

Operated value of A = KA ( 2) 

From (1) we see that K = B/C. If the output is equal to the operated 

value of A then the output can be expressed as 

Output = Operated value of A = (AB)/C (3) 

If the output of the operational multiplier is equal to the operated 
value of A, then multiplication between the inputs A and B has been 

achieved. We also note that division of the product (AB) by C has 

also been achieved. Although the operations indicated above can be 

more complex than multiplying by a constant, this choice has the ad

vantage of simplicity and i s used in this paper. 

IMPLEMENTATION 

The first implementation for analog multiplication to be consider

ed was the counter approach as shown in Fig. 2. This approach is an 

obvious implementation of the operational multiplier. The counter 

approach consists of two accumulators designated as i~ and i ~C. 

These accumulators continue to add ~ and ~C until i ~C is larger than 

B. 
Once the accumulation stops, it is seen that B is equal to n ~ C, 

or at least within one unit of ~. Obviously one can see that in order 
to achieve high accuracy the incremental constant, ~. must be very 

small. The problem arises in that as ~ decreases, the number of steps, 

n, increases. If B is much greater than ~ · C, then a long interval 
will be necessary to obtain the output signal. The disadvantage of 

this approach is that the operation can take too much time, particu
larly if B is much greater than ~C . 

The second method selected is the successive approximation approach 

as used in analog-to-digital converters, and is shown in Fig. 3. One 
can readily see the advantages of this approach over the previous one. 
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The master accumulator successively approximates the value of VB 
resulting after n steps in 

n b. 
E -!-v _v 

i=O 21 C B 

Rearranging terms: 

But, 
n b . 

V l: ~ V 
out = i=O 2, A 

Substituting, 

(4) 

(5) 

(6) 

(7) 

Eq. (7) is approximate to within 2-n times Vc. This difference between 
eq. (3) and eq. (1) can be reduced by increasing the value of n. 
One can see that the successive approximation approach converges to 

the proper value much faster than the counter approach. 
It turns out that this method is naturally adaptable to SC cir

cuits and requires only three matched capacitors to implement the 
basic accumulator operation. Fig. 4 shows a circuit which resembles 
a SC integrator but has been modified for our purposes in implementing 
eq. (3). The circuit works as follows. At the beginning of the 

multiplying operation, the left-hand capacitor C is charged to the 
voltage VC. The right-hand capacitor C is completely uncharged during 
this time. The multiplication operation begins by switching across 
both capacitors by exactly one-half. The value of Vc/2 is then applied 
either positively or negatively to the capacitor C connected around 
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Fig. 3 - Successive approximation implementation of the operational multi plier . 
r uef - ~2 

olon confrof 

Fig. 4 - Switched capacitor accumulator circuit. 
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the op amp. This capacitor serves the purpose of a memory or an 
accumulator. The decision to accumulate in a positive or negative 
manner is made by comparing the output of the master accumulator with 
a reference voltage. If the accumulator is below this voltage, then 
the next sample is added to the accumulator. In this manner, the 
accumulator successively builds in value KVC which approaches the 
reference voltage. A second accumulator operates on VA in the same 
manner as the first accumulator resulting in the implementation of eq. 
(3). Since the accuracy of the accumulators is dependent upon how 
well the three capacitors designated as C can be matched, each sample 

of VA should be transferred to the accumulator with an error of less 
than 0.1 %. 

Fig. 5 shows the implementation of the four-quadrant multiplier 

using the successive approximation accumulator of Fig. 4 . The 
accumulators use a set of switches indicated as 11+ 11 and 11

-
11 to deter

mine the polarity of the accumulation. In the 11 +11 position the 
accumulator has the advantage of operating in a stray-sensitive mode 
which prevents capacitor and switch parasitics from affecting the 
accumulation. 12 In the negative position the accumulator is unfortu
nately susceptible to these parasitics which must be taken into account 
when considering the accuracy of the circuit . Note that the sign 
of the four-quadrant multiplier is automatically determined in Fig. 5. 
This is possible because the accumulators are bidirectional. 

A shift register is used to control the operation and sequencing 
of the multiplier. The first output of the shift register is used to 
reset the accumulators by discharging the accumulation capacitance, 

and by charging the left-hand capacitor C to the value of VA (or VC). 
The accumulation process continues until the shift register reaches 

the point where the sample-and-hold circuits are triggered and C is 
reconnected to the voltage VA (or VC). The theoretical accuracy of 
the multiplier will be determined by the number of steps taken in 
the successive approximation sequence. Obviously, if no other consi
derations are pertinent, the accuracy times speed of performing a 
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Fig. 5 - Block diagram of the successive approximation implementation. 
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Fig. 6 - Experimental static characteristics of the multiplier. 
VOUT versus VA with VB constant. 
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·~i r , ~ ope ration would be a con~ +on+. 

The static performance of a mult i plier is typically characteriz~d 

by offsets, feedthrough, and nonlinearities. Offset is due to an 

output voltage when both inputs are zero. Feedthrough is defined as 

an output when one of the inputs is zero and the other varies over 

its range of possible values. Nonlinearity has to do with the fact 

that the output of the multiplier may not be exactly equal to the pro
duct of the two inputs. The static performance of the breadboard 

version of the SC multiplier is shown in Fig. 6. To obtain these 

plots , VC was connected to a +10 volt supply. VA was set to -10, 

zero, and +10 volts to produce the three lines shown, and VB was then 

swept over the range of -1 0 to +10 volts. As one can see, errors are 

mai nly due to a constant offset of about 156 millivolts. This is a 
result of the number of successive approximations chosen for the 
breadboard vers ion . Eight approximations are performed for each 

iteration. Since one approximation is discarded for resetting accumu

lators, seven useful approximations (n = 7) remain. If in this case , 

V,.. = 10 volts. then the useful range 0 + 11 is from -10 to +10 volts 
> • ! ) 1/ r J 1 t <; t 0 s means that tl · <imum error wou ld then be 

{ IJ r 2 J V0 I U 
,,r Because this >r is constant as shown, it 

/ 27 
can easily be nulled out by a s ingle adjustment to be mentioned later. 

The results are similar when VA is held constant and VB is swept over 

its useful range. 

In addition to these static characteristics, the bandwidth of the 

multiplier is al so of interest. The bandwidth can be defined in terms 
of the magnitude response or the phase response. The best dynamic 

definition is the frequency at which a 1% absolute error is introduced 
in the multiplication operation. Figure 7 shows a plot of magnitude 

and ~;hase versus frequency for a s ine wave applied to the v6 input. 
The inruts VA and VC are each held at 10 volts. Note that the magni-
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~Ji , ··ellldins u.Jnstan t regardless of frequency , and t hat t he pha se 

shift is a linear function of input frequency. 

In the MOS version the offset error in Fig. 5 will become more 
important because of the clock feedthrough of the switches (not to be 

confused with the multiplier feedthrough). Because of the large 
clock signals and the possibility of high impedance states, small 

portions of the clock transitions will appear on the capacitors of 

Fig. 4 . Although this feedthrough can become dependent upon the signal 

level, for purposes of this paper we shall assume that it is constant . 

Fortunately, in SC c ircuits we have the opportunity to sample the 

output offset and to introduce a cancel li ng component during the 
clock phases . To see how we can apply this idea to cancel the offset, 
let us consider the influence of the clock feedthrough. If the clock 

feedthrough introduces a constant component in the output, say £ , 

then we can write the output of the two accumulators at the end of a 

multiplication sequence as 

V out = K VA + £ (n) 

and 

.v lwre K i., exp ressed as 

K=+ - + - + ( 1 0 ) 
2 4 8 

where n is the number of steps in the successive approximation of VB 

of the mult ipli er. The approach taken to reduce this clock feedthrough 

is to build the dummy accumulator shown in Fig. 8. The dummy accumu 
lator is identica l to the other accumulators except that it has no 

input, and is not allowed to accumulate due to the discharge of the 
feedback capacitor C around the op amp during each clock cycle (this 

switch on the other two accumulators only operates once during the 
entire multiply sequence). In this manner a voltage will appear across 
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the two output capacitors which is caused by the cloc k fee dt hrou~r drtC 

the op amp offsets. These two capacitors will be applied on the same 

clock phase to the two accumulators in such a manner as to cancel the 
offsets due to the clock feedthrough and op amp offsets of these 

accumulators. If the dummy accumulator is matched to the actual accu

mulators, then the offsets should cancel. Furthermore, this system 

has the ability to track changes in the offset due to different clock 

amplitudes or temperature changes. 

The nature of the operation of 
problems in multiplier feedthrough. 

this multiplier prevents serious 
If the A input is zero, then 

only clock feedthrough and op amp offset can contribute to an output 

but the dummy accumulator scheme of Fig. 8 should remove thi s output t c 

minimize the B feedthrough. If the B input is zero, a; should become 

close to zero since the dummy accumulator i s removing the £ value in 

eq. (3). 

Since the error caused by mi smatching of the capacitors is con

stant and since we are assuming that the clock feedthrough i s not a 
funct i on of the input amplitudes, then the nonlinearity of the multi

plier should be very small. The dynamic range of the multiplier 

should be limited only by the power supplies and the ability of the 

dummy accumulator scheme t o cancel t h1 ttse t s ca used by c1ock feed 

through and op amp offsets. Indeed, bt~n dboard results of the SC 

multiplier circuit show that non-lin ed r 1ties are al mos t negl i gi bl e 

with matched accumulators. 
condu ct ed at present. 

CONCLUSIONS 

More extensive measurements are being 

This paper considered the design of a SC multiplier which can be 

implemented using MOS technology . This circuit is compatible with 
other signal processing circuits designed by SC methods. The multi
plier has four quadrant capability and has the potential of requiring 
no adjustments before application . The accuracy of the multiplier 
appears to very comparable to existing multipliers and the opportunity 

to use offset cancelling techniques give the promise of excellent 
static characteristics. The circuit requires 6 op amps and 11 capaci-
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tors in its present form including the dummy accumulator. At present, 

portions of Fig. 5 are being implemented using MOS technology to 

further study the effects of clock feedthrough and other sources of 

error to the multiplier operation . The next step will be to integrate 
the entire circuit and to analyze the performance of the system and 

to study potential applications. 

slorl- ~2 

-.-------/ -Q to Accumulator A 

q2 _L - ~, 
c 

I 
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~2 1 - ~, c 
I 

Fig. 8 - Dummy accumulator used to cancel offset. 
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