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1. INTRODUCTION 
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As the underlying silicon fabrication technology has become 
capable of producing chips with transistor counts in excess of 
1,000,000 , problems associated with correct design are assuming ever 
greater importance . Exhaustive checking of mask artwork for errors 
becomes prohibitive. Technologies and design styles which obviate large 
classes of potential errors are enormously preferable to those that do 
not. 

A morlular , hierarchical design style can , with proper 
restriction, confine many types of checks to one level of the hierarchy 
within each module . A set of such restrictions is given in this paper, 
together with a mechanism for their enforcement. These restrictions 
capture a substantial fraction of the design style given in [1] . 

As feature sizes are scaled below one micron , ratio logic 
processes like nMOS and I 2 L become progressively less attractive . 
Straightforward scaling to smaller sizes results in a linear increase in 
current per unit chip area . Technological tricks such as high 
resistivity polysilicon pullup devices or very small injector current 
can be used to decrease current drain , but the resulting devices become 
increasingly vulnerable to "soft error" problems from alpha particles , 
etc . Fully restored "static" logic using a complementary process is the 
natural choice for systems with submicron components . Present bulk CMOS 
processes have a number of very ugly analog rules associated with the 
4-layer nature of the process . As a result , the designer must be aware 
of details of the technology to an alarming degree . CMOS on an 
insulating substrate is , on the other hand , a conceptually clean 
process: it requires no analog rules whatsoever if proper timing 
conventions are observed . There are recent signs that it may become 
reliably producible as well . 

We introduce a programming notation in which every syntactically 
correct program specifies a restoring logic component , i . e . , a component 
whose outputs are permanently connected, via "not too many" transistors , 
to t h e power supply . It is shown how the specified components can be 
translated into transistor diagrams for CMOS integrated circuits . As 
these components are designed as strict hierarchies , it is hoped that 
the translation of the transistor diagrams into layouts for integrated 
circuits can be accomplished mechanically . 
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In this paper we do not address the dynamic behavior of the 
logic components. The "proper timing conventions," alluded to above, are 
left for a subsequent paper. 

2 . SWITCHES IN CMOS 

The CMOS technology uses two types of transistors: the N-channel 
enhancement transistor (1a) and the P-channel enhacement transistor (1b) • 

li • 
I I 

T.ate !:ate 
1a 1b 

Fiq. 

Both of them act as switches but they are "on" and "off" for complemen­
tnry values on their gates . Denoting a high voltage by " 1" and a low 
voltage by "0", switch 1a is on if the gate is 1 and 1b is on if the 
qate is 0 . When the switches are on , however , they do not convey a 1 
and a 0 on their paths (in Fig. 1 the horizontal connections) equally 
well. Switch 1a conveys a 0 virtually perfectly, but it is not a 
perfect switch for a 1 . Switch 1b, conversely, is a good conveyor for a 
1 only . 

Using these CMOS transistors we want to make two types of 
switches , a "normally-off" switch (2a) and a "normally-on " switch (2b). 

e1 • I • e2 e 1 • 

T 
• e2 

gate gate 
2a 2b 

Fig . 2 

If the gate is 0 switch 2a is off (nonconveying) and 2b is on 
(conveying) . Otherwise 2a is on and 2b is off . The points e1 and e2 
are called the end points of the switch. We call the connection between 
the end points its path . If nothing is known about the values conveyed 
through its path, except that they are O' s and 1 ' s, the realization of a 
switch requires two transistors: (the complement of g is denoted as g ' ) 
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• 
and 

are realizerl as 

_( 
---~n~---· and 

---r:-
Fig. 3 

These double transistors make our switches good conveyors for 
both O' s and 1's, which allows the use of longer strings of switches . 
These strings of switches , however , should not be too long: the distance 
t o the "power supply" must not be excessive, otherwise the signal will 
become inaccurate and the circuit slow . To do justice t o the nature of 
restoring logic we disallow the driving of external o utputs by long 
s trings of switches . This shall be r ef lected in the composi tion rules 
to be formulated in Section 3 . 

The gate inputs are run in two-rail logic to accommodate both 
the g and the g ' signals . Fo r switches that are known to convey a lways 
the same value there are two instances in which they ca n bP. realized by 
just one transistor: 

value 0 value 

1 • 

1 and 

are realized as 

• • u li 
T 

and 

T 
Fiq . 4 

In that case, the two-rail representation of the gate s ignal i s not 
necessary . It is assumed that the compiler can recognize instances in 
which one transistor suffices . From now on we shall simply design in 
terms of switches and apply the above knowledge only if we wish to count 
the number of transistors a component requires . 
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3 . RESTORING LOGIC COMPONENTS 

A restoring logic component (RL) has external ports . The pur-
pose of an RL is to establish a relation between the values it communi­
cates via its external ports . We restrict ourselves to the values 0 and 1 • 

.. 
We design components in a hierarchical fashion. A typical RL is 

shown in Fig. 5 . 

Fig . 5 

It c::unsists of subcomponents A, B, and C, which are also RL's, 
and a p~ttern of conn~ctions between them . We restrict the possible 
conn~ction patterns to guarantee that the composite is aqain an RL. 
Such restrictions are only usP.ful if they can be formulated in terms of 
the connection pattern , i . e ., independent of the internal structures of 
the subcomponents thus connected . Before we can formulate these 
connection rules we have to give a few definitions . Each port is either 
an ~U!: port or an output port. The connection pattern of an RL 
specif~es connections between its external ports and the external ports 
of the subRL's . We call the external ports of a subRL internal ports of 
the RL . An ext~rnal output port of a subRL is an internal input port of 
the RL. Conversely every external input port of a subRL gives the RL an 
internal output port . The rules on connection patterns will be sta t ed 
in terms of external and internal ports of the RL. 

We assume that the distribution of power and ground to all 
components is taken care of by the compiler . Johannsen (1] has outlined 
~ m~thorl for the distribution of power and ground over hierarchically 
rlefined components . In our nomenclature: each RL has two constan~ 
internal input ports , denoted by 0 and 1. These constants are the power 
supply rails which must be present in every component . 

In Section 2 we have introduced the term path for the connection 
between the two end points of a switch . We now generalize that term . 
We say that there is a path between two ports p1 and p2 if either they 
are connected by a wire(a"wire path") or there is a switch such that 
there are paths between p1 and one end point of the switch and between 
p2 ann the other end point. In the latter case we say that the switch 
is on the path . A path is called a conveying path if all switches on 
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the path are on . The values on the input ports (extPrnal or internal) 
determine which switches are on and which are off , and hence between 
which ports there are conveying paths. (Whenever we do not specify 
whether a port is external or internal, that is donP. intentionally . ) 

Two input ports are said to be fighting if there exists any 
assignment of values to all input ports such tnat there is a conveying 
path between the two input ports . 

We introduce three rules the connection pattern must satisfy: 

Rule l· [no fighting): No two input ports are fighting. 

403 

RE_le 2. [restored external outputs): Every external output port 
(a) has a wire path to an intPrnal port , or 
(b) has a conveying path to 0 or 1 for every assignment 

of values to all input ports. 
Rule 3 . [nonfloating internal outputs): For every internal 

output port p and for every assignment of values to all 
input ports there is a conveying path between p and an 
input port. 

Notice that Rule 1 includes 0 and 1 (the two constant internal input 
ports). Remember that internal outputs are regarded as (external) inputs 
of the subcomponent and that the subcomponent ' s external outputs are 
internal inputs for the component . 

The justification of Rule 1 is obvious. The result of Rule 2 is 
that all external outputs are driven by power or ground. They may be 
driven via a number of switches , but such a string of switches is 
confined to one component, viz. the component in which the actual 
connection to 0 or 1 is made . 

The rules for internal outputs, i . e., outputs to subcomponents, 
are more liberal. We allow that inputs from subcomponents and inputs 
from the environment are directed through switches before they are 
output to subcomponents. For inputs from subcomponents this is 
reasonable: they are restored by the subcomponents . With inputs fr om 
the environment we have to be more careful . We have to allow that such 
a signal from an external input port goes through a switch to an 
internal output port . Otherwise we would be unable to make the flip­
flop to be shown in Example 3 . But it does allow long strings of switches 
"going into" the hierarchy , as sketched in Fig. 6 . 

We do not consider this a serious drawback. One may expect a sub­
component to have (physically) shorter connections than the component 
itself . Restoring in the " inward " direction , therefore, seems less 
vital than in the "outward" direction . Still, if we wish to bound the 
lengths of such inward strings of switches we could have the compiler 
insert amplifiers into them to restore their signals . 

The consequence of allowing the switches in the outputs to sub­
components is that Rule 2 has to be stronger than one might expect . In 
Rule 2 we could not allow wire paths between external input ports and 
external output ports . This may seem to disallow running through a 
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---c::J-- stands 
fo~ d connection 
via one o~ mo~e 
switches 

component ·,.ire whose signals a~e not used by the component. In fact , it 
does not . Such a wi~e is just not pa~t of the component . (On the chip 
a wi~e between t"'o components may run through the "area" of another 
component , but that is a matte~ of chip layout. It is a physical 
rrope~ty, not a functional one . ) Allowing wire paths between external 
input ports and external output ports would have given rise to the 
rossibi.lity of ill-restored outputs. Fig . 7 sketches an RL t hat is 
nllowed by Rules 2 and 3 . Now assume that each Si is just a wire path 
from itc; input to its output , which would be allowed if we weakened Rule 
2 . The output of the RL is then not ~estored . Imagine now that each Si 
actually has the same structure as the whole RL . It is clear t hat t h is 
wo•Jld violate our goal of having restored external outputs . 

In one ~espect is Rule 3 stronger than necessary . It requires 
that all subcomponents receive well- defined inputs , even a subcomponen t 
whose ouputs are not used . We could have restricted the rule to 
subcomponents whose outputs are actually used in the computation, but 
that would have made both the rule and the checking whether it is obeyed 
mo~e complicated . 

Fig . 7 
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4 . THE PROGRAMMING NOTATION 

In this section we introduce a programming notation in which 
connection patterns can be specified that satisfy the three rules of the 
preceding section . There are two properties a good notation should 
enjoy . First , it should be relatively simple for the compiler to check 
that a program is syntactically correct . If this mechanical check i~ 
simple , it will probably be simple for programmers to convince 
themselves that their designs satisfy the rules . We shall show how the 
syntactic checking can be performed. Second , it should be possible to 
give a formal definition of the semantics of our programs . We have not 
yet achieved the second goal, hut ultimately we must be able to prove 
that a component performs a certain computation. That seems a much 
better technique than a demonstration of its effect with an a posteriori 
simulation. (Besides, how do we know that the simulation is correct if 
we do not have a rigorous definition of the meaning of our statements?) 
It will not be simple, but remember: a program of more than, say, 20 
lines is probably too long, we then have not chosen the right 
subcomponents. 

For the formulation of connection patterns we introduce the term 
node. Every port is a node, but the program may introduce additional 
(interior) nodes . For each node n we shall introduce a ~nectio~ 
concUtion C(n) and a ~~.!:~~ed_-_to-co_~stant conc1i~i2!} CC(n) . We shall, 
furthermore , distinguish a directly driven set D, which is a subset of 
the set of nodes . These concepts- will be used in the syntax checking . 
A formal definition of how they depend on the connection pattern 
specified will be given later . Intuitively, C(n) will be the condition 
on the input values under which node n is connected to an input, and 
CC(n) will be the condition under which it is connected to a constant . 
The C(n)'s will be used to enforce the no-fighting rule. The set D will 
comprise all nodes that are connected by a wire path to an internal 
input port . 

The program consists of a sequence of statements . Each statement 
introduces a number of connections and switches between nodes, and 
thereby affects the C(n) and CC(n) of each node involved and the set o . 
Initially, i . e ., prior to the first statement, D is the set of all 
internal input ports , C(n) is 1 for each input port and CC(n) is 1 for 
the two constant internal input ports . The C(n) and CC(n) are 0 for all 
other nodes . ("1" should be interpreted as "true" and " 0" as "false ." ) 

The program is complete if finally we have: 

for every external output port p 
for every internal output port p 

p c D V CC ( p) 
C(p) = 1 

(These completeness conditions correspond to Rules 2 and 3 . The observ­
ing of Rule 1 is discussed below. ) 

EXAMPLE 1 comp inverter (in? , out ! ): 
begin in ' + out= 1; in+ out 0 end 

CALTECH CONFERENCE ON VLSI, Januar>y 1981 



406 
Ma~tin Rem and Ca~ve~ Mead 

The above is a simple example of an RL , it does not have 
subRL ' s . The first line specifies the name of the component ann its 
external ports . ~ question mark o~ an exclamation point indicates that 
the port is an input port or an output port, respectively. In the 
ronnection pattA~n two switches are specif~~d, ~extually separated by a 
semicolon . The first statement exp~esses that the output port out is 
connected to the constant input port 1. The condition in fr ont of the 
ar~ow specifies unner which ci~cumstances the switch in the connection 
shoulrl bP on . In this case a normally- on switch whose gate is connected 
tr) th~ input port in (or a normally-off switch with its gate connected 
tr) in ' ) is speciE ied . The second s ta temen t specifies the second switch . 

For the more pictorially inclined reader we observe the resem­
hlancP of t~e program and the following diagram . 

in out 

0 

F'iq . 8 

Why is the program syntactical ly correct? In order to be able to show 

that thP only o•ltput port out satisfies 

out e: D V CC (out) = 1 

wP have to be more precise as to how a statement affects C(n) , CC(n) and 
D. 

In a program switches are introduced by statements 

BE -+ X = y 

in which x ann y are nodes , and BE is a boolean expression in terms of 
nodes , more precisely: BE is a production of the grammar 

<boolean expression>::= <term> { v <term>} 

<term> :: = <factor> { /\ <factor>} 

<factor> ::= <primary> I <primary> ' 

<primary>: := <node> \ (<boolean expression>) 
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Prior to the statement 

RE -+ x = y 

we should have 

for all nodes n in BE : C(n} 1 , and 

( C ( x } 1\ C ( y } 1\ BE} = 0 

The first requirement is introduced to permit the syntnx check­
ing to be done incrementally at each statement of the program . A con­
~equence , however , is that not every order of the statements in the 
program is permissible. It is still an open question whether this 
serializability requirement is not too strong . If we succeed in design­
ing our components under this regime it will certainly enhance both the 
readability and the checkability of our programs. 

The second requirement guarantees the observance of the no­
fighting rule . The statement does not have an effect on the set D. The 
effect on C(n} and CC(n} is 

Z(x}:= (Z(x) V (Z(y} 1\ BE)) 

Z ( y}: = ( Z ( y} V ( Z ( x) 1\ BE} ) 

in which Z stands for C or CC . 

The set D is affected only by a statement that specifies a 
direct connection, i . e ., one th~t does not go through a switch . Wa 
obtain such a statement by dropping the condi tiona 1 part "BE+": 

X = y 

As for the effect on C(n) and CC(n} this statement is like a switch 
specification with " 1 " as its boolean expression . Prior to the 
statement the condition 

(C(x) 1\ C(y)) = 0 

should hold , and its effect is that Z(x} and Z(y) both become Z(x} V 

Z(y} (Z still standing for Cor CC}. The effect on the set D is that if 
either node x or node y was a member of D then D is extended with the 
other node . 

In the example of the inverter we initially have out¢ D . As the 
program leaves the set D unchanged we have to show that it establishes 
CC(out) 1 . The first statement is legitimate as we initially have 
C(in} = 1 and 

C (out} 11 C ( 1 ) 1\ in ' 0 1\ 1 1\ in ' 
0 

The effect is that both C(out) and CC(out) become in '. The second 
statement is legitimate as well: C(in) is still 1 and 
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in ' II 1 II in 
0 

It establishes CC(out) 
program . 

in 1 V in , which is 1 • Hence, it Ls a complete 

Notice that both switches in the inverter a r e of the type that 
=an bP. implemented by one transistor . The inverter , consequently , 
reqni res only two transistors . We shall use this inverter as a sub­
componen t in our thin1 example . 

EXAMPLE 2 . 

?3m~ nor(a? , b? , out !) : 
b~9i~ a v b -+ out = 0 ; a 1 11 b 1 -+ out = 1 end 

In the first statement the boolean express ion is a disjunction 
of two nodes . This gives rise to a diagram in which two switches are 
rlaced in parallel . The boolean expression of the second statement 
::>pAci fies two switches that a re placed in series . The whole component 
rPquires four trdnsistors . The following picture shows a diagram of the 
r;omponPnt . 

a 

Piq . 9 

out 
b 

A n~w node is introduced by mentioning it in the right-hand side (in the 
part tn th8 right of the arrow) of a statement . There is no example of 
this in the paper . 

F:XAt iPLE 3 . 

camp flip-flop(in?, ld?, q !, qbar!): 
begin sub i1 , i2 : inverter ; 

end 

i2 . in = i1.out; 
ld 1 -+ i 1.in = i2 . out ; ld-+ i 1.in in ; 
g = i2 . out; qbar = i1 . out 

The second line of the program specifies that the component 
flip - flop has two subcomponents , na med i1 a nd i2 , of type inverter . As 
each inverter has two external ports, thi s declaration provides the 
component with four internal ports . An internal port that corresponds 
t o the externa l port p of a subcomponent S is denot~d as S . p . As both 
i1 and i2 have an external output port out , the component flip-flop has 
the internal input ports i l.out and i2 . out . Likewise , it has the 
internal output ports i1 . in and i2 . in . 
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The reader is encourageo to check that the component satisfies 
the rules by formally deriving that all statements are legitimate and 
that the program establishes 

q t: D, qhar t: o, C(i1. in) = 1 , C( i2 . in) 

A possible diagram of the component is 

qbar 

Fig . 1 0 

5. BUSES 

409 

If we want to design a random access memory out of inverters , we 
must be able to connect their inputs and outputs via buses to the inputs 
and outputs of the memory . We want to connect the outputs of many 
subcomponents (inverters) to the same bus. Just connecting these 
outputs (internal inputs to the memory) to the bus would violate the 
no- fighting rule . We shall remedy this by putting switches in these 
connections. 

To indicate when the memory cell has to drive the bus 
("reading") and when it has to receive a value from the bus ( "writing " ) 
two inputs, r and w, go into the cell: 

memory cell 

bus 
Fig. 11 

We attach a number of cells to the same bus . Such a composition will 
only be an RL if we guarantee that , at most one of the cells can have 
its r equal to 1 . The signals r come from another subcomponent of the 
memory , usually called the "decoder ." The purpose of the decoder is to 
assure that at most one r equals 1. Given that the outputs of the 
decoder satisfy that requirement, we can show that the composition is 
again an RL . This is a new phenomenon: a condition on the values output 
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by a subcomponent has to be takP.n into account to prove that a 
connection pattern specifies an RL . We call such a check a semantic 
check. 

The following program is a 1-of-2 decoder . 

c~mp 1-of-2 decoder(in? , out1!, out2! ): 
begin in + out1 = 1; in + out2 = 0; 

in' + out 1 = 0; in' -+ ou t2 = 1 
enrl 

By a syntactic check , as described in Section 4, we can show that this 
is a legitimate RL. In this case it is also simple to check that the 
output values satisfy (outl A out2) = 0 , but that is a semantic check . 

The moral is that we will design components that are only 
"conditional RL ' s," i . e., they are RL ' s under the condition that the 
output values of other components satisfy certain constraints . When 
such components are put together we will have to see to it that such 
semantic constraints are indeed satisfied. 

6. A GLANCE INTO THE FUTURE OF COMPUTING 

In this paper we have not addressed the dynamic behavior of 
components, i.e . , how they react to transitions on their inputs . That 
is obviously the next step. By adopting proper timing and signalinq 
conventions (cf . Chapter 7 of [2]) one should be able to address the 
dynamic behavior in an equally discrete fashion. The purpose of such 
conventions is to qenerate "data valid" inputs that signal that the 
input data are well-defined and may be inspected . Such a data valid 
signal may come from a clock or it may be an asynchronous acknowledge 
siqnal. 

After that there are two roads we can follow . We can make a 
machine. That machine will accept programs and execute them . We then 
concentrate on the programs and if we wish to have a certain computation 
performed, we write a program for it . That is the traditional road . 

We are led to the other, more promising , road if we observe that 
we are already designing programs , programs that can be compiled into 
transistor diagrams for CMOS . We make components out of subcomponents . 
Every time they will be more "powerful " or "sophisticated" than their 
subcomponents . We can inspect how a component is implemented by looking 
at its program text to see how it is composed out of subcomponents . 
Every component is again an implementation of a "higher level " concept. 
We can , e . g . , introduce components that communicate other data types 
than just O' s and l ' s . If we look at the implementation of that 
concept , we may notice that it is achieved by multiplexing or by the u se 
of multiple ports . In that way the components we introduce will give us 
new modes of expression so that we can formulate our programs in terms 
of concepts that are more appropriate to our computations . After a 
while , we will have a mode of expression that one would customarily call 
a "higher level programming language. " 
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Throughout al l the levels of t h e hierarchy we have maintained 
t hat we program by composing components out of communicating sub­
components . But by expressing a program in such a notation we have also 
specified an implementation for it, we have actual l y specified for the 
program a transistor diagram in CMOS . From there, the step to a 
complete silicon compiler is a (nontrivial) matter of generating the 
proper geometric representation of the transistor diagrams . 

Of course, we do not have to translate all our programs into 
silicon to have them executed . We could also compile them into machine 
code, e.g., into code for a machine designed by taking the other 
aforementioned road . Our choice will depend on such external factors as 
the speed with which the computation has to be performed or the expected 
frequency of its use . It is also possible that we want to make a 
translation into machine code first in order to get some experience with 
the program and that we do not have it compiled into silicon until it is 
in a form that suits us . 

POSTSCRIPT 

Is this an article about machine design or about programming? 
The answer to that question is definitely "Yes! " . 
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