
A NOTATION FOR DESIGNING RESTORING LOGIC CIRCUITRY IN CMOS

Martin Rem
Eindhoven University of Technology

and California Institute of Technology
and

Carver Mead
Professor of Computer Science, Electrical Engineering

and Applied Physics
Californir~ I'1!';titntf' of Technology

1. INTRODUCTION

399

As the underlying silicon fabrication technology has become
capable of producing chips with transistor counts in excess of
1,000,000 , problems associated with correct design are assuming ever
greater importance . Exhaustive checking of mask artwork for errors
becomes prohibitive. Technologies and design styles which obviate large
classes of potential errors are enormously preferable to those that do
not.

A morlular , hierarchical design style can , with proper
restriction, confine many types of checks to one level of the hierarchy
within each module . A set of such restrictions is given in this paper,
together with a mechanism for their enforcement. These restrictions
capture a substantial fraction of the design style given in [1] .

As feature sizes are scaled below one micron , ratio logic
processes like nMOS and I 2 L become progressively less attractive .
Straightforward scaling to smaller sizes results in a linear increase in
current per unit chip area . Technological tricks such as high
resistivity polysilicon pullup devices or very small injector current
can be used to decrease current drain , but the resulting devices become
increasingly vulnerable to "soft error" problems from alpha particles ,
etc . Fully restored "static" logic using a complementary process is the
natural choice for systems with submicron components . Present bulk CMOS
processes have a number of very ugly analog rules associated with the
4-layer nature of the process . As a result , the designer must be aware
of details of the technology to an alarming degree . CMOS on an
insulating substrate is , on the other hand , a conceptually clean
process: it requires no analog rules whatsoever if proper timing
conventions are observed . There are recent signs that it may become
reliably producible as well .

We introduce a programming notation in which every syntactically
correct program specifies a restoring logic component , i . e . , a component
whose outputs are permanently connected, via "not too many" transistors ,
to t h e power supply . It is shown how the specified components can be
translated into transistor diagrams for CMOS integrated circuits . As
these components are designed as strict hierarchies , it is hoped that
the translation of the transistor diagrams into layouts for integrated
circuits can be accomplished mechanically .

CALTECH CONFERENCE ON VLSI, Janua~y 1981

400
Ma~tin Rem and CaPVeP Mead

In this paper we do not address the dynamic behavior of the
logic components. The "proper timing conventions," alluded to above, are
left for a subsequent paper.

2 . SWITCHES IN CMOS

The CMOS technology uses two types of transistors: the N-channel
enhancement transistor (1a) and the P-channel enhacement transistor (1b) •

li •
I I

T.ate !:ate
1a 1b

Fiq.

Both of them act as switches but they are "on" and "off" for complemen­
tnry values on their gates . Denoting a high voltage by " 1" and a low
voltage by "0", switch 1a is on if the gate is 1 and 1b is on if the
qate is 0 . When the switches are on , however , they do not convey a 1
and a 0 on their paths (in Fig. 1 the horizontal connections) equally
well. Switch 1a conveys a 0 virtually perfectly, but it is not a
perfect switch for a 1 . Switch 1b, conversely, is a good conveyor for a
1 only .

Using these CMOS transistors we want to make two types of
switches , a "normally-off" switch (2a) and a "normally-on " switch (2b).

e1 • I • e2 e 1 •

T
• e2

gate gate
2a 2b

Fig . 2

If the gate is 0 switch 2a is off (nonconveying) and 2b is on
(conveying) . Otherwise 2a is on and 2b is off . The points e1 and e2
are called the end points of the switch. We call the connection between
the end points its path . If nothing is known about the values conveyed
through its path, except that they are O' s and 1 ' s, the realization of a
switch requires two transistors: (the complement of g is denoted as g ')

DESIGN DISCIPLINES SESSION

401
A Notation fo~ Designing Resto~ing Logic Ci~cuitry ~n CMOS

•
and

are realizerl as

_(
---~n~---· and

---r:-
Fig. 3

These double transistors make our switches good conveyors for
both O' s and 1's, which allows the use of longer strings of switches .
These strings of switches , however , should not be too long: the distance
t o the "power supply" must not be excessive, otherwise the signal will
become inaccurate and the circuit slow . To do justice t o the nature of
restoring logic we disallow the driving of external o utputs by long
s trings of switches . This shall be r ef lected in the composi tion rules
to be formulated in Section 3 .

The gate inputs are run in two-rail logic to accommodate both
the g and the g ' signals . Fo r switches that are known to convey a lways
the same value there are two instances in which they ca n bP. realized by
just one transistor:

value 0 value

1 •

1 and

are realized as

• • u li
T

and

T
Fiq . 4

In that case, the two-rail representation of the gate s ignal i s not
necessary . It is assumed that the compiler can recognize instances in
which one transistor suffices . From now on we shall simply design in
terms of switches and apply the above knowledge only if we wish to count
the number of transistors a component requires .

CALTECH CONFERENCE ON VLSI, Janua~y 1981

402
Martin Rem and Carver Mead

3 . RESTORING LOGIC COMPONENTS

A restoring logic component (RL) has external ports . The pur-
pose of an RL is to establish a relation between the values it communi­
cates via its external ports . We restrict ourselves to the values 0 and 1 •

..
We design components in a hierarchical fashion. A typical RL is

shown in Fig. 5 .

Fig . 5

It c::unsists of subcomponents A, B, and C, which are also RL's,
and a p~ttern of conn~ctions between them . We restrict the possible
conn~ction patterns to guarantee that the composite is aqain an RL.
Such restrictions are only usP.ful if they can be formulated in terms of
the connection pattern , i . e ., independent of the internal structures of
the subcomponents thus connected . Before we can formulate these
connection rules we have to give a few definitions . Each port is either
an ~U!: port or an output port. The connection pattern of an RL
specif~es connections between its external ports and the external ports
of the subRL's . We call the external ports of a subRL internal ports of
the RL . An ext~rnal output port of a subRL is an internal input port of
the RL. Conversely every external input port of a subRL gives the RL an
internal output port . The rules on connection patterns will be sta t ed
in terms of external and internal ports of the RL.

We assume that the distribution of power and ground to all
components is taken care of by the compiler . Johannsen (1] has outlined
~ m~thorl for the distribution of power and ground over hierarchically
rlefined components . In our nomenclature: each RL has two constan~
internal input ports , denoted by 0 and 1. These constants are the power
supply rails which must be present in every component .

In Section 2 we have introduced the term path for the connection
between the two end points of a switch . We now generalize that term .
We say that there is a path between two ports p1 and p2 if either they
are connected by a wire(a"wire path") or there is a switch such that
there are paths between p1 and one end point of the switch and between
p2 ann the other end point. In the latter case we say that the switch
is on the path . A path is called a conveying path if all switches on

DESIGN DISCIPLINES SESSION

A Notation fo~ Designing Resto~ing Logic Ci~cuitry in CMOS

the path are on . The values on the input ports (extPrnal or internal)
determine which switches are on and which are off , and hence between
which ports there are conveying paths. (Whenever we do not specify
whether a port is external or internal, that is donP. intentionally .)

Two input ports are said to be fighting if there exists any
assignment of values to all input ports such tnat there is a conveying
path between the two input ports .

We introduce three rules the connection pattern must satisfy:

Rule l· [no fighting): No two input ports are fighting.

403

RE_le 2. [restored external outputs): Every external output port
(a) has a wire path to an intPrnal port , or
(b) has a conveying path to 0 or 1 for every assignment

of values to all input ports.
Rule 3 . [nonfloating internal outputs): For every internal

output port p and for every assignment of values to all
input ports there is a conveying path between p and an
input port.

Notice that Rule 1 includes 0 and 1 (the two constant internal input
ports). Remember that internal outputs are regarded as (external) inputs
of the subcomponent and that the subcomponent ' s external outputs are
internal inputs for the component .

The justification of Rule 1 is obvious. The result of Rule 2 is
that all external outputs are driven by power or ground. They may be
driven via a number of switches , but such a string of switches is
confined to one component, viz. the component in which the actual
connection to 0 or 1 is made .

The rules for internal outputs, i . e., outputs to subcomponents,
are more liberal. We allow that inputs from subcomponents and inputs
from the environment are directed through switches before they are
output to subcomponents. For inputs from subcomponents this is
reasonable: they are restored by the subcomponents . With inputs fr om
the environment we have to be more careful . We have to allow that such
a signal from an external input port goes through a switch to an
internal output port . Otherwise we would be unable to make the flip­
flop to be shown in Example 3 . But it does allow long strings of switches
"going into" the hierarchy , as sketched in Fig. 6 .

We do not consider this a serious drawback. One may expect a sub­
component to have (physically) shorter connections than the component
itself . Restoring in the " inward " direction , therefore, seems less
vital than in the "outward" direction . Still, if we wish to bound the
lengths of such inward strings of switches we could have the compiler
insert amplifiers into them to restore their signals .

The consequence of allowing the switches in the outputs to sub­
components is that Rule 2 has to be stronger than one might expect . In
Rule 2 we could not allow wire paths between external input ports and
external output ports . This may seem to disallow running through a

CALTECH CONFERENCE ON VLSI, January 1981

404

Fig. 6 .

Martin Rem and Carver Mead

---c::J-- stands
fo~ d connection
via one o~ mo~e
switches

component ·,.ire whose signals a~e not used by the component. In fact , it
does not . Such a wi~e is just not pa~t of the component . (On the chip
a wi~e between t"'o components may run through the "area" of another
component , but that is a matte~ of chip layout. It is a physical
rrope~ty, not a functional one .) Allowing wire paths between external
input ports and external output ports would have given rise to the
rossibi.lity of ill-restored outputs. Fig . 7 sketches an RL t hat is
nllowed by Rules 2 and 3 . Now assume that each Si is just a wire path
from itc; input to its output , which would be allowed if we weakened Rule
2 . The output of the RL is then not ~estored . Imagine now that each Si
actually has the same structure as the whole RL . It is clear t hat t h is
wo•Jld violate our goal of having restored external outputs .

In one ~espect is Rule 3 stronger than necessary . It requires
that all subcomponents receive well- defined inputs , even a subcomponen t
whose ouputs are not used . We could have restricted the rule to
subcomponents whose outputs are actually used in the computation, but
that would have made both the rule and the checking whether it is obeyed
mo~e complicated .

Fig . 7

DESIGN DISCIPLINES SESSION

A Notation for> Designing Restor>ing Logic Cir>cuitr>y in CMOS
405

4 . THE PROGRAMMING NOTATION

In this section we introduce a programming notation in which
connection patterns can be specified that satisfy the three rules of the
preceding section . There are two properties a good notation should
enjoy . First , it should be relatively simple for the compiler to check
that a program is syntactically correct . If this mechanical check i~
simple , it will probably be simple for programmers to convince
themselves that their designs satisfy the rules . We shall show how the
syntactic checking can be performed. Second , it should be possible to
give a formal definition of the semantics of our programs . We have not
yet achieved the second goal, hut ultimately we must be able to prove
that a component performs a certain computation. That seems a much
better technique than a demonstration of its effect with an a posteriori
simulation. (Besides, how do we know that the simulation is correct if
we do not have a rigorous definition of the meaning of our statements?)
It will not be simple, but remember: a program of more than, say, 20
lines is probably too long, we then have not chosen the right
subcomponents.

For the formulation of connection patterns we introduce the term
node. Every port is a node, but the program may introduce additional
(interior) nodes . For each node n we shall introduce a ~nectio~
concUtion C(n) and a ~~.!:~~ed_-_to-co_~stant conc1i~i2!} CC(n) . We shall,
furthermore , distinguish a directly driven set D, which is a subset of
the set of nodes . These concepts- will be used in the syntax checking .
A formal definition of how they depend on the connection pattern
specified will be given later . Intuitively, C(n) will be the condition
on the input values under which node n is connected to an input, and
CC(n) will be the condition under which it is connected to a constant .
The C(n)'s will be used to enforce the no-fighting rule. The set D will
comprise all nodes that are connected by a wire path to an internal
input port .

The program consists of a sequence of statements . Each statement
introduces a number of connections and switches between nodes, and
thereby affects the C(n) and CC(n) of each node involved and the set o .
Initially, i . e ., prior to the first statement, D is the set of all
internal input ports , C(n) is 1 for each input port and CC(n) is 1 for
the two constant internal input ports . The C(n) and CC(n) are 0 for all
other nodes . ("1" should be interpreted as "true" and " 0" as "false .")

The program is complete if finally we have:

for every external output port p
for every internal output port p

p c D V CC (p)
C(p) = 1

(These completeness conditions correspond to Rules 2 and 3 . The observ­
ing of Rule 1 is discussed below.)

EXAMPLE 1 comp inverter (in? , out !):
begin in ' + out= 1; in+ out 0 end

CALTECH CONFERENCE ON VLSI, Januar>y 1981

406
Ma~tin Rem and Ca~ve~ Mead

The above is a simple example of an RL , it does not have
subRL ' s . The first line specifies the name of the component ann its
external ports . ~ question mark o~ an exclamation point indicates that
the port is an input port or an output port, respectively. In the
ronnection pattA~n two switches are specif~~d, ~extually separated by a
semicolon . The first statement exp~esses that the output port out is
connected to the constant input port 1. The condition in fr ont of the
ar~ow specifies unner which ci~cumstances the switch in the connection
shoulrl bP on . In this case a normally- on switch whose gate is connected
tr) th~ input port in (or a normally-off switch with its gate connected
tr) in ') is speciE ied . The second s ta temen t specifies the second switch .

For the more pictorially inclined reader we observe the resem­
hlancP of t~e program and the following diagram .

in out

0

F'iq . 8

Why is the program syntactical ly correct? In order to be able to show

that thP only o•ltput port out satisfies

out e: D V CC (out) = 1

wP have to be more precise as to how a statement affects C(n) , CC(n) and
D.

In a program switches are introduced by statements

BE -+ X = y

in which x ann y are nodes , and BE is a boolean expression in terms of
nodes , more precisely: BE is a production of the grammar

<boolean expression>::= <term> { v <term>}

<term> :: = <factor> { /\ <factor>}

<factor> ::= <primary> I <primary> '

<primary>: := <node> \ (<boolean expression>)

DESIGN DISCIPLINES SESSION

A Notation fop Designing RestoPing Logic CiPcuitPy in CMOS
407

Prior to the statement

RE -+ x = y

we should have

for all nodes n in BE : C(n} 1 , and

(C (x } 1\ C (y } 1\ BE} = 0

The first requirement is introduced to permit the syntnx check­
ing to be done incrementally at each statement of the program . A con­
~equence , however , is that not every order of the statements in the
program is permissible. It is still an open question whether this
serializability requirement is not too strong . If we succeed in design­
ing our components under this regime it will certainly enhance both the
readability and the checkability of our programs.

The second requirement guarantees the observance of the no­
fighting rule . The statement does not have an effect on the set D. The
effect on C(n} and CC(n} is

Z(x}:= (Z(x) V (Z(y} 1\ BE))

Z (y}: = (Z (y} V (Z (x) 1\ BE})

in which Z stands for C or CC .

The set D is affected only by a statement that specifies a
direct connection, i . e ., one th~t does not go through a switch . Wa
obtain such a statement by dropping the condi tiona 1 part "BE+":

X = y

As for the effect on C(n) and CC(n} this statement is like a switch
specification with " 1 " as its boolean expression . Prior to the
statement the condition

(C(x) 1\ C(y)) = 0

should hold , and its effect is that Z(x} and Z(y) both become Z(x} V

Z(y} (Z still standing for Cor CC}. The effect on the set D is that if
either node x or node y was a member of D then D is extended with the
other node .

In the example of the inverter we initially have out¢ D . As the
program leaves the set D unchanged we have to show that it establishes
CC(out) 1 . The first statement is legitimate as we initially have
C(in} = 1 and

C (out} 11 C (1) 1\ in ' 0 1\ 1 1\ in '
0

The effect is that both C(out) and CC(out) become in '. The second
statement is legitimate as well: C(in) is still 1 and

CALTECH CONFERENCE ON VLSI, JanuaPy 1981

408

C(out) A C(O) A in

Martin Rem and Ca~ve~ ~ead

in ' II 1 II in
0

It establishes CC(out)
program .

in 1 V in , which is 1 • Hence, it Ls a complete

Notice that both switches in the inverter a r e of the type that
=an bP. implemented by one transistor . The inverter , consequently ,
reqni res only two transistors . We shall use this inverter as a sub­
componen t in our thin1 example .

EXAMPLE 2 .

?3m~ nor(a? , b? , out !) :
b~9i~ a v b -+ out = 0 ; a 1 11 b 1 -+ out = 1 end

In the first statement the boolean express ion is a disjunction
of two nodes . This gives rise to a diagram in which two switches are
rlaced in parallel . The boolean expression of the second statement
::>pAci fies two switches that a re placed in series . The whole component
rPquires four trdnsistors . The following picture shows a diagram of the
r;omponPnt .

a

Piq . 9

out
b

A n~w node is introduced by mentioning it in the right-hand side (in the
part tn th8 right of the arrow) of a statement . There is no example of
this in the paper .

F:XAt iPLE 3 .

camp flip-flop(in?, ld?, q !, qbar!):
begin sub i1 , i2 : inverter ;

end

i2 . in = i1.out;
ld 1 -+ i 1.in = i2 . out ; ld-+ i 1.in in ;
g = i2 . out; qbar = i1 . out

The second line of the program specifies that the component
flip - flop has two subcomponents , na med i1 a nd i2 , of type inverter . As
each inverter has two external ports, thi s declaration provides the
component with four internal ports . An internal port that corresponds
t o the externa l port p of a subcomponent S is denot~d as S . p . As both
i1 and i2 have an external output port out , the component flip-flop has
the internal input ports i l.out and i2 . out . Likewise , it has the
internal output ports i1 . in and i2 . in .

DESIGN DISCIPLINES SESSION

A Notation for Designing Restoring Logic Circuit~y in CMOS

The reader is encourageo to check that the component satisfies
the rules by formally deriving that all statements are legitimate and
that the program establishes

q t: D, qhar t: o, C(i1. in) = 1 , C(i2 . in)

A possible diagram of the component is

qbar

Fig . 1 0

5. BUSES

409

If we want to design a random access memory out of inverters , we
must be able to connect their inputs and outputs via buses to the inputs
and outputs of the memory . We want to connect the outputs of many
subcomponents (inverters) to the same bus. Just connecting these
outputs (internal inputs to the memory) to the bus would violate the
no- fighting rule . We shall remedy this by putting switches in these
connections.

To indicate when the memory cell has to drive the bus
("reading") and when it has to receive a value from the bus ("writing ")
two inputs, r and w, go into the cell:

memory cell

bus
Fig. 11

We attach a number of cells to the same bus . Such a composition will
only be an RL if we guarantee that , at most one of the cells can have
its r equal to 1 . The signals r come from another subcomponent of the
memory , usually called the "decoder ." The purpose of the decoder is to
assure that at most one r equals 1. Given that the outputs of the
decoder satisfy that requirement, we can show that the composition is
again an RL . This is a new phenomenon: a condition on the values output

CALTECH CONFERENCE ON VLSI, Janua~y 1981

410
Martin Rem and Carver Mead

by a subcomponent has to be takP.n into account to prove that a
connection pattern specifies an RL . We call such a check a semantic
check.

The following program is a 1-of-2 decoder .

c~mp 1-of-2 decoder(in? , out1!, out2!):
begin in + out1 = 1; in + out2 = 0;

in' + out 1 = 0; in' -+ ou t2 = 1
enrl

By a syntactic check , as described in Section 4, we can show that this
is a legitimate RL. In this case it is also simple to check that the
output values satisfy (outl A out2) = 0 , but that is a semantic check .

The moral is that we will design components that are only
"conditional RL ' s," i . e., they are RL ' s under the condition that the
output values of other components satisfy certain constraints . When
such components are put together we will have to see to it that such
semantic constraints are indeed satisfied.

6. A GLANCE INTO THE FUTURE OF COMPUTING

In this paper we have not addressed the dynamic behavior of
components, i.e . , how they react to transitions on their inputs . That
is obviously the next step. By adopting proper timing and signalinq
conventions (cf . Chapter 7 of [2]) one should be able to address the
dynamic behavior in an equally discrete fashion. The purpose of such
conventions is to qenerate "data valid" inputs that signal that the
input data are well-defined and may be inspected . Such a data valid
signal may come from a clock or it may be an asynchronous acknowledge
siqnal.

After that there are two roads we can follow . We can make a
machine. That machine will accept programs and execute them . We then
concentrate on the programs and if we wish to have a certain computation
performed, we write a program for it . That is the traditional road .

We are led to the other, more promising , road if we observe that
we are already designing programs , programs that can be compiled into
transistor diagrams for CMOS . We make components out of subcomponents .
Every time they will be more "powerful " or "sophisticated" than their
subcomponents . We can inspect how a component is implemented by looking
at its program text to see how it is composed out of subcomponents .
Every component is again an implementation of a "higher level " concept.
We can , e . g . , introduce components that communicate other data types
than just O' s and l ' s . If we look at the implementation of that
concept , we may notice that it is achieved by multiplexing or by the u se
of multiple ports . In that way the components we introduce will give us
new modes of expression so that we can formulate our programs in terms
of concepts that are more appropriate to our computations . After a
while , we will have a mode of expression that one would customarily call
a "higher level programming language. "

DESIGN DISCIPLINES SESSION

A Notation fop Designing RestoPing Logic CiPcuitPy in CMOS
411

Throughout al l the levels of t h e hierarchy we have maintained
t hat we program by composing components out of communicating sub­
components . But by expressing a program in such a notation we have also
specified an implementation for it, we have actual l y specified for the
program a transistor diagram in CMOS . From there, the step to a
complete silicon compiler is a (nontrivial) matter of generating the
proper geometric representation of the transistor diagrams .

Of course, we do not have to translate all our programs into
silicon to have them executed . We could also compile them into machine
code, e.g., into code for a machine designed by taking the other
aforementioned road . Our choice will depend on such external factors as
the speed with which the computation has to be performed or the expected
frequency of its use . It is also possible that we want to make a
translation into machine code first in order to get some experience with
the program and that we do not have it compiled into silicon until it is
in a form that suits us .

POSTSCRIPT

Is this an article about machine design or about programming?
The answer to that question is definitely "Yes! " .

ACKNOWLEDGEMENTS

The research described in this paper was sponsored by the
Defense Advanced Research Projects Agency, ARPA Order Number 3771, and
monitored by the Office of Naval Research under contract number
N00014-79-C-0597 .

REFERENCES

[1] Johannsen, Dave , "Hierarchical Power Routing." Display file 2069 ,
Computer Science Department, California Institute of Technology,
Pasadena , CA, October 1978

(2] Mead , Carver & Lynn Conway , "Introduction to VLSI Systems ."
Addison-Wesley Publishing Company , Reading MA , 1980

CALTECH CONFEREN~E ON VLSI, Januapy 1981

