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Abstract

A theoretical analysis of three–dimensional cavitating flows based on a boundary element approach which includes
rotational and viscous flow effects is presented. Partial sheet cavitation is studied by a closed–cavity nonlinear model
which includes the prediction of the cavity detachment point. The trailing vorticity path is described by a wake–
alignment technique. Viscosity effects are included via a viscous/inviscid technique based on boundary–layer as-
sumptions. Cavitation modelling, wake alignment and viscous–flow correction are integrated into the potential–flow
solution by BEM through a coupling procedure. Comparisons of present numerical results with experiments and nu-
merical results in the literature show the capability of the proposed methodology to take into account viscosity effects
on attached cavitation, and to analyze the flowfield in the tip–vortex region.

1 Introduction

Cavitation on three–dimensional lifting bodies involves extremely complex two–phase flow phenomena whose effects
are detrimental for hydrofoils, marine propellers and turbomachinery. Theoretical modelling of those phenomena
is still a serious challenge for researchers. Recent developments show the increasing interest for models based on a
sophisticated description of the flowfield by using Reynolds Averaged Navier–Stokes (RANS) solvers for single–phase
or multi–phase flows (see,e.g., Kato 1996). Those approaches are very promising in that they are capable to describe
the interactions between viscosity, vorticity and bubble dynamics. Nevertheless, three–dimensional cavitation analyses
are still at an early stage of development and applications are typically limited to two–dimensional flows.

Thus, approaches that are of interest for practical applications are currently based on irrotational–flow assumptions.
This imposes severe limitations:(i) viscosity effects on sheet cavitation are neglected,(ii) the cavity detachment point
is poorly predicted,(iii) the aft portion of the cavity requires artificial modelling; in addition, simplified descriptions of
the trailing vorticity path are used and hence,(iv) flowfield analysis is not adequate for tip–vortex cavitation modelling.

The aim of this paper is to present a nonlinear cavitating flow analysis based on a Boundary Element Method
(BEM) for potential flows which includes viscous–flow correction and a careful description of the trailing vorticity.

Existing literature on viscous cavitating flow analysis by BEM includes both approaches based on the solution
of RANS equations and those based on boundary–layer assumptions. In particular, Chahine & Hsiao (2000) present
a coupled RANS/BEM approach in which the attached cavity is determined via an interface tracking method based
on BEM, whereas the viscous flow around the body and the cavity is studied by a commercial RANS code. Kinnas,
Mishima and Brewer (1994) propose a viscous/inviscid interactive method in which a nonlinear inviscid cavity flow
model by BEM is coupled with a boundary–layer analysis around the wetted portion of the body surface and the cavity.
Numerical applications are limited to two–dimensional flows. The two approaches above do not include tip–vortex
flow analyses. Tip–vortex cavitation by an inviscid–flow BEM is proposede.g., by Kinnas, Lee and Mueller (1998).

In the present paper, the analysis of three–dimensional cavitation in high–Reynolds number flows by means of
a viscous/inviscid coupling technique is proposed. This methodology extends a formulation presented by Esposito
& Salvatore (2000) that is limited to two–dimensional flows. The inviscid cavitating flow is studied by a boundary
integral formulation for the velocity potential with sheet cavitation modelling. The numerical solution is obtained
by a zero–th order BEM. The vortical layer surrounding the body surface, the cavity and the trailing wake is stud-
ied by means of a boundary–layer approximation that is valid in the case of attached or slightly separated flows.
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Two–dimensional integral boundary–layer equations are solved by using a strip–theory approach. Potential–flow and
boundary–layer solutions are matched via an iterative process in which the viscosity correction to the potential flow
solution is given in terms of transpiration velocity (Lighthill 1958). The trailing vorticity path is determined by a wake
alignment procedure.

Comparisons of present numerical results with experiments on cavitation of three–dimensional hydrofoils are
performed in order to assess the capability of the proposed methodology to take into account viscosity effects on sheet
cavitation. In particular, the prediction of the cavity detachment point is addressed. In addition, preliminary results on
tip–vortex flow analysis are given as a first step towards viscous–flow tip–vortex cavitation modelling.

2 Theoretical analysis of irrotational cavitating flows

Under the assumptions of inviscid and initially irrotational fluid, the perturbation velocity field is irrotational and hence
it can be expressed in terms of a scalar potential,φ. In a frame of reference fixed to the body, the total velocity field is

q = v I + ∇φ, (1)

wherev I denotes the unperturbed incoming flow. By incompressible flow assumptions, the potentialφ satisfies the
Laplace equation∇2φ = 0 in the unbounded fluid regionVP surrounding the body, its trailing wake and the cavity. In
the framework of potential flow analyses of lifting bodies, the wake denotes a zero thickness layer where the vorticity
generated on the body is shed, and represents a discontinuity surface forφ. The cavity denotes the fluid region where
vaporization occours: here, partial sheet cavitation is considered, and hence the cavity is assumed to be a thin layer
attached to the body surface.

The pressure field inVP is given by the Bernoulli equation that, in the frame of reference fixed to the body, reads

∂φ
∂t

+
1
2

q2 +
p
ρ

+ gz0 =
1
2

v2
I

+
p0

ρ
, (2)

wheret denotes time,q = ‖q‖, vI = ‖v I ‖, p0 is the undisturbed–flow pressure,ρ is the fluid density,g is the gravity
acceleration andz0 denotes the depth with respect to the water free surface.

The Laplace equation forφ is solved by imposing boundary conditions on∂VP. On the portion of the body surface
outside the cavity,i.e., on the wetted surfaceSWB, the impermeability condition yieldsq ·n = 0, or, recalling Eq. (1)
and denoting byn the outward unit normal to the surface,

∂φ
∂n

= −v I ·n on SWB. (3)

Across the wake surfaceSW , pressure and normal component of the perturbation velocity are continuous

∆p = 0, ∆
(

∂φ
∂n

)
= 0, on SW , (4)

where∆ denotes discontinuity across the two sides ofSW . By combining the Bernoulli equation (2) and Eqs. (4), one
obtains that the potential discontinuity∆φ is convected along wake streamlines,∆φ(xW , t) = ∆φ(xWTE, t− τW), where
xWTE is the trailing edge wake point lying on the same streamline asxW , andτW is the convection time fromxWTE toxW .

A further condition onφ is required in order to assure that no finite pressure jump may exist at the body trailing
edge (Kutta condition). Following Morino, Chen and Suciu (1975), this is equivalent to impose

∆φ(xWTE, t) = φu
TE

(t) − φl
TE

(t) , (5)

whereφu
TE

andφl
TE

denote, respectively, body trailing edge potentials evaluated on suction and pressure sides.
According to classical sheet cavitation modelling, the cavity is assumed to be a fluid region where the pressure is

constant and equal to the vapor pressurepv, and a non–penetration condition applies on the cavity edgeSC. Thus, by
imposingp = pv on SC, and by using the Bernoulli theorem (2), yields
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[
v2

I
σ−2

(
∂φ
∂t

+gz0

)
+v2

I

] 1
2

on SC, (6)
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whereσ = (p0− pv)/1
2ρv2

I
denotes the cavitation number. Equation (6) is used to obtain a boundary condition forφ

onSC in terms ofσ. By exploitingq in terms of Eq. (1), and by integrating Eq. (6) in chordwise direction, one obtains
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ds̃, (7)

wheres,u are curvilinear coordinates onSB, in chordwise and spanwise directions, respectively; quantitiesqs,qu are
the covariant components ofq in the(s,u) coordinate system,qn = q ·n, andsCLE is the cavity leading edge abscissa.

The conditionp = pv and hence Eq. (7) are not valid in the aft portion of the cavity where pressure tends to
wetted–flow conditions through complex two–phase flow phenomena. In the present work, a cavity–closure region is
introduced in which pressure is forced to vary smoothly fromp = pv to wetted flow values behind the cavity trailing
edge. The fractionλ of the cavity length occupied by the closure region is prescribed (typically, 0.1< λ< 0.3).

Denoting byhc = F (s,u, t) the cavity thickness, and bySCB the portion of the body surface underneath the cavity,
the constant–pressure and the non–penetration conditions onSC yield thatSC is a material surface and hence

∂φ
∂n

= −v I ·n + χc on SCB, (8)

whereχc = q ·∇Shc + ∂hc/∂t , and∇S denotes the surface gradient onSB.

3 Viscous flow analysis and coupling

The present viscous–flow analysis is limited to the case of attached high–Reynolds number flows, in which the thick-
nessδ of the vortical layer is assumed to be thin as compared to the thickness of the hydrofoil sections, and hence
boundary–layer assumptions are valid. Two–dimensional integral boundary–layer equations are solved by means of a
strip–theory approach in which the three–dimensional nature of the flowfield at the boundary–layer edge is taken into
account, whereas three–dimensional effects inside the boundary layer are neglected. This limits the application of the
proposed approach to the analysis of hydrofoils with moderate skew angle.

In the laminar portion of the boundary layer, the von Kármán equation is solved by using Thwaites’ collocation
method (Thwaites 1949). The turbulent portion of the boundary layer and the wake are studied by the ‘lag–entrainment
method’ by Green, Weeks and Brooman (1973). Specifically, the von Kármán equation is coupled with two transport
equations which model the flow entering the boundary layer (entrainment equation) and the turbulent kinetic energy
(lag equation). Michel’s method (Michel 1952) is used to predict the transition from laminar to turbulent flow.

The boundary–layer solution is coupled with the potential–flow solution via a viscous/inviscid interactive tech-
nique. The boundary–layer equations are solved by using as input the velocity distribution onSWB∪ SC and on the
two sides ofSW obtained by the potential–flow model. Next, the boundary–layer solution determines the viscosity
correction to the potential flow. Such correction is given in terms of a transpiration flux acrossSWB∪ SC and SW

which, according to Lighthill (1958), takes into account the displacement of the potential flow streamlines due to the
presence of the vortical layer. Denoting byδ?s the displacement thickness of the vortical layer in chordwise direction,
the transpiration flux is given byχv = ∂(qe

sδ?s)/∂s, whereqe
s is evaluated by the corrected potential–flow model.

Here, the transpiration–flux concept is extended to cavitating flows. Normal–flow conditions over the wetted
portion of the body surface, Eq. (3), and across the wake surfaceSW, second of Eqs. (4), are modified as follows

∂φ
∂n

= −v I ·n + χv, on SWB; ∆
(

∂φ
∂n

)
= χv

u + χv
l , on SW , (9)

where superscriptsu and l denote quantities evaluated, respectively, in the wake vortical layers emanating from the
suction and pressure sides of the body surface. In addition, Eq. (8), valid onSCB, is formally replaced by

∂φ
∂n

= −v I ·n + χc + χv on SCB. (10)

The boundary–layer and potential–flow solutions are matched through an iterative process.
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4 Boundary integral formulation and wake alignment

The potential flowfield including the viscosity correction is determined by means of a boundary integral formulation.
By assuming that the perturbation vanishes at infinity, the third Green identity yields

E(x, t)φ(x, t) =
∮

SWB∪SC

(
∂φ
∂n

G−φ
∂G
∂n

)
dS(y) +

∫
SW

[
∆
(

∂φ
∂n

)
G− ∆φ

∂G
∂n

]
dS(y) on VP, (11)

whereG =−1/4π‖x−y‖, whereasE is a domain function equal to 0,1/2,1, respectively, inside, on, or outside∂VP.
Equation (11) is solved by using a boundary element approach. The boundary surface and the wake are divided

into hyperboloidal quadrilateral elements. Equation (11) in discretized form is evaluated at each centroid of the body
surface. Flow quantities are assumed to be constant on each element. The numerical solution of Equation (11)
determinesφ on SWB and∂φ/∂n on SC once∂φ/∂n on SWB, φ on SC, and∆φ on SW are given by boundary conditions
(5), (7), (9), and by taking into account Eq. (10).

In Eq. (11), both cavity surfaceSC and wake surfaceSW are not knowna priori. By assuming that the cavity
thicknesshc is small as compared to the hydrofoil sections,SC in Eq. (11) is replaced by the portion of the body surface
underneath the cavity,SCB. This is a usual simplification in three–dimensional cavitation modelling by BEM that
avoids additional computational effort required by surface re–panelling and re–calculation of influence coefficients.

The cavity thickness distribution is given by Eq. (8) which, recalling the definition ofχc, represents a partial
differential equation forhc that may be solved onceφ and ∂φ/∂t are known onSCB. The cavity trailing edge is
determined by the conditionhc = 0. If this condition is not verified, it is assumed that the guessed planform is too
small, and the cavity shape is extrapolated. This procedure is repeated until the cavity planform converges.

The actual shape ofSW is determined by imposing that wake points move according to the local flow velocity:
such procedure is referred to as wake alignment. A boundary integral representation of the perturbation velocity field
∇φ is obtained by taking the gradient of both sides of Eq. (11). Once Eq. (11) in dicretized form has been solved, this
yields an explicit representation for∇φ at any nodexW of the discretized wake surface.

Wake alignment is achieved by updating the location ofxW as follows:

xW (t + ∆t) = xW (t)+
∫ t+∆t

t
[∇φ(xW ,τ)+v I ] dτ. (12)

In the equation above, timet refers to the convection process of material points alongSW . In discretized form, the
left–hand side of Eq. (12) represents the updated location of the wake node lying on the same streamwise strip asxW at
a distance∆s= qw∆t, whereqw = 1

2(qu +ql ) is the convection speed. The integral is evaluated by the trapezoidal rule.
Starting from an initial guess forSW , Eq. (12) is used to update the location of each wake node. OnceSW has been
modified, the potential field is re–computed by Eq. (11). The process is repeated until convergence of the wake shape.

The evaluation of the influence coefficients in the boundary integral equations above is performed by using ana-
lytical integration as proposed by Morinoet. al. (1975). In addition, the contribution to∇φ given by doublets∂G/∂n
distributed onSW is calculated by using the equivalence between the velocity induced by a constant doublet distribu-
tion on a quadrilateral panel and that induced by a square vortex ring lying on the panel edges (Campbell 1973). If the
distancer from the vortex is less than a given valuerδ, the intensity of the velocity induced by the vortex is evaluated as
a linear function ofr. This corresponds to introduce a rough modelling of the velocity defect into the viscous vortical
layer surrounding the wake surfaceSW , and prevents from numerical instabilities. In the present approach, the vortex
core radiusrδ equals the vortical–layer thickness in the wake predicted by the boundary–layer solution.

5 Solution procedure

A crucial issue related to the present BEM is the procedure chosen to include simultaneously nonlinear effects re-
lated to viscous–flow correction, wake alignment and cavitation modelling. The proposed procedure is based on the
assumption that the flowfield perturbation induced by the cavity has a negligible impact on the location of the wake
surface (see Sec. 6). Thus, the wake alignment procedure is performed under non–cavitating flow conditions. Once the
actual shape of the trailing wake has been determined, an initial guess for the cavity trailing edge is imposed and the
cavitation model is switched on. The non–cavitating wake–alignment stage is coupled with a boundary–layer solution
in order to obtain:(i) the vortex core thicknessrδ to be used in the wake–alignment procedure, as described in Sec. 4,
and(ii) a guess for the location of the cavity detachment line, as discussed below in Sec. 6.
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Once the cavitation model is switched on, viscous/inviscid coupling is performed. The cavitating–flow analysis is
repeated until convergence of the cavity shape and hence the solution of the boundary–layer equations is updated. This
procedure is repeated until∆VC ≤ 1×10−3 and∆Dv≤ 1×10−3, where∆VC and∆Dv denote, respectively, difference
between cavity volume and viscous drag computed at two successive iterations. Typically, 4÷5 iterations are required
to converge. Within each iteration, the evaluation of the cavity shape converges in 2÷10 steps.

6 Numerical results

Validation of three–dimensional cavitating flow predictions has been performed by considering an experiment per-
formed at the MIT Marine Hydrodynamics Tunnel. Details of the hydrofoil geometry and test conditions are given
by Kinnas & Fine (1993). The hydrofoil, a windsurfer fin, has a rounded tip, spanD = 2.63c, wherec is the root
chord. Cavity planform measurements atσ = 1.084 andσ = 1.148, Reynolds numberRe= 9× 105, and angle of
attackα = 6.5◦ are reported by Kinnas & Fine (1993).

First, the influence of the body surface discretization on numerical results has been examinated:Ns andNu de-
note, respectively, the number of discretization elements along hydrofoil chord and span. A sensitivity analysis (not
reported here) shows that usingNu > 20 does not modify cavity planform predictions significantly. The influence of
the parameterNs is shown in Figs. 1 and 2. Figure 1 depicts cavity volumes atσ = 1.148 obtained by varyingNs with
fixed Nu = 20, whereas Fig. 2 shows the corresponding cavity thickness distributions at a representative chordwise
section. It may be concluded that, ifNs≥ 50, discretization errors are negligible. Hence, numerical results described
below have been obtained by usingNs = 60, Nu = 20. In addition, the wake surface has been discretized by using
Nw = 30 elements in the streamwise direction andNu elements in the transverse direction.
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Figure 1: Effect of grid parameterNs on cavity volume:
fin, σ = 1.148.
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Figure 2: Effect of grid parameterNs on cavity thickness:
fin chordwise section aty/D = 0.6, σ = 1.148.

One of the major problems of cavitation modelling by inviscid–flow methods is the localization of the cavity
detachment point,xd. Computed cavity patterns strongly depend on this quantity, and hence predictions may be un-
reliable. This is illustrated by Fig. 3 which depicts cavity planforms obtained by forcingxd to different values. In the
present approach, cavity detachment is imposed where a sharp increase of the shape factorH–ratio between displace-
ment thickness and momentum thickness–is determined by solving the laminar boundary–layer. As an example, Fig. 4
depicts the chordwise distribution ofH in the leading–edge region at various steps of the viscous/inviscid coupling
(VIC) procedure:H = 3 is used to determinexd. The first–step solution is obtained under wetted–flow conditions,
whereas cavitation modelling is included from the second step. It may be observed that the cavity detachment location
predicted under wetted–flow conditions is a good approximation of the converged result (step 4).

Cavity extension predictions by using the viscous/inviscid coupling are given in Fig. 5 (σ = 1.084) and in Fig. 6
(σ = 1.148). Present results are compared to measurements by Kinnas & Fine (1993), and to numerical results by
Pelleat & Pellone (1996), obtained by an inviscid–flow model in which the location of the cavity detachment line is
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Figure 3: Effect of parameterxd on cavity planform:
fin, σ = 1.148.
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Figure 5: Cavity planform prediction: fin,σ = 1.084.
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Figure 6: Cavity planform prediction: fin,σ = 1.148.

prescribed. Both numerical results are in satisfactory agreement with experiments with the only exception of the tip
region. It should be observed that measurements reportxd/c= 0.024 constant along the span for bothσ values, present
results predict 0.02< xd/c< 0.035, whereasxd/c = 0.006 is used by Pelleat & Pellone (1996).

It is worthwhile to evaluate the viscosity effects on cavitation if the cavity detachment point is prescribed. Figure 7
shows cavities obtained by using the viscous/inviscid coupling (VIC) technique and by using the invisicid–flow model.
In both calculations,xd has been forced to a fixed value. It is apparent that viscosity tends to reduce both cavity
extension and thickness. (In Fig. 7 and in Fig. 8 below, the cavity thickness is multiplied by a factor 5).

The calculations above do not include wake alignment. In particular, a prescribed wake having a cylindrical shape
aligned to the unperturbed flow has been used. Hence, it is necessary to evaluate the influence of wake alignment on
cavitating flow predictions. One of the conclusions of the present study is that the shape of the wake has a negligible
influence on attached cavities whose chordwise extension at the tip does not exceed 50÷60% of hydrofoil chord. In
such cases, cavities obtained by combining viscous/inviscid coupling and wake alignment are identical within plotting
accuracy to those obtained by using viscous/inviscid coupling with a prescribed cylindrical wake (result not shown
here). Figure 8 illustrates a result obtained by combining viscous/inviscid coupling and wake alignment. Computed
cavity profiles at some sections along the span are shown. It is apparent the roll–up of the wake tip. The flowfield in
the tip region is strongly influenced by the thicknessrδ of the vortex core. The smoothness of the wake shape in that
region demonstrates that reliable values forrδ are predicted by the present boundary–layer solution.
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Figure 7: Viscosity effects on cavity planform. Solid
line: VIC; dashed line: Potential flow. Fin,σ = 1.148.

Figure 8: Predicted attached cavity and trailing wake:
Fin, σ = 1.148,Re= 1×106.
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Figure 9: Tip–vortex location: non–cavitating flow,
elliptic wing (Re= 1×106 in present results).
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Figure 10: Tip–vortex shape atx/c = 8.0. Non–
cavitating flow,α = 5◦, elliptic wing.

The importance of wake alignment combined to cavitation modelling is related to the analysis of tip–vortex flow.
In particular, accurate predictions of the tip–vortex location may be obtained. In order to demonstrate this, exper-
imental observations of tip–vortex cavitation of an elliptical hydrofoil by Arndt, Arakeri and Higuchi (1991) have
been considered. The hydrofoil has an elliptic planform and aspect ratioA = 3 (see Arndtet al. 1991, for details).
Figure 9 depicts the tip–vortex trajectories measured in several tests withRe= 5.3×105÷1.04×106, α = 3◦÷13◦,
andσ = 0.26÷3.19. Experiments are compared to present calculations by using the non–cavitating viscous/inviscid
approach with wake alignment and to numerical results obtained by Krasny (1987) by using a two–dimensional vortex
sheet model for non–cavitating flows. In spite of the wide range of variations for bothα, Reandσ, the measured
trajectories present a small spread, as represented by the thickness of the dashed curve in Fig. 9. In particular, Arndt
et al. (1991) observe that the tip–vortex location is slightly influenced by the hydrofoil loading and hence by the oc-
currence of cavitation. This is confirmed in part by present calculations which determine helical tip–vortex paths with
helicoid axes atα = 5◦ andα = 8◦ that are close each other. On the contrary, a strong dependence of the tip–vortex
path byα is found by Krasny (1987) which uses a two–dimensional model that does not take into account the strong
three–dimensional nature of the roll–up process at the wake tip, as shown by Fig. 8.

Finally, Fig. 10 shows the computed wake surface under non–cavitating flow conditions withα = 5◦ andRe=
1×106. A detail of the wake tip–vortex region in a vertical plane at a distancex/c = 8 from the hydrofoil root trailing
edge is presented. The location of the numerical tip–vortex,i.e.,of the wake streamline emanating from the hydrofoil
tip, is also shown. It is apparent thatNu = 20 discretization elements in spanwise direction are sufficient to have a
careful description of the roll–up process.
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7 Conclusions

A theoretical analysis of cavitation on three–dimensional hydrofoils has been presented. The proposed methodology
is based on a boundary element method in which cavitation modelling, wake alignment and viscous–flow correction
are integrated into the potential–flow solution by a coupling procedure. The boundary layer solution allows to predict
cavity detachment, and hence one of the major drawback of inviscid–flow cavitation models is overcome. In addition,
wake alignment allows to evaluate the tip–vortex trajectory and hence to localize tip–vortex cavitation. The thickness
of the tip–vortex core is related to the thickness of the boundary layer at the body trailing edge.

Numerical results show the capability of the proposed approach to give accurate predictions of attached cavita-
tion. The influence of viscosity on cavity thickness and extension is discussed. The localization of the tip–vortex is
satisfactory as compared to experimental measurements. A detailed investigation (only in part reported here due to
lack of space) has been conducted in order to determine the discretization requirements that are necessary to obtain
reliable predictions in terms of cavitation, boundary–layer solution and wake alignment procedure. This is of primary
importance in view of the extension of the present approach to the analysis of cavitation of marine propellers.

Further refinements of the present approach should be obtained by including the solution of fully three–dimensional
boundary–layer equations and tip–vortex cavitation modelling.
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