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Abstract

The paper will review the art, craft and science of modelling cavitation bubbles near boundaries through the
use of the boundary integral method. The presentation will come in four parts, namely, a discussion of recent
experimental studies that have motivated our current research, understanding the physics associated with
the phenomena, a detailed presentation on the boundary integral method and, finally, a detailed comparison
between experiment and theory, indicating the improved understanding and interpretation of behaviour that
the computed results provide.

1 Introduction

Much of the recent research has been associated with modelling the behaviour of laser generated bubbles near
both rigid and very flexible boundaries. In the former case the study has been concerned with understanding
the fluid mechanics associated with single cavitation bubble luminescence (SCBL). Because of the presence
of the rigid boundary, the bubble collapses asymmetrically yielding a high speed liquid jet directed towards
the boundary. For standoff distances below a critical value, the jet impacts against the other side of the
bubble, leading to the formation of a toroidal bubble and a resulting ring vortex fluid motion. However,
beyond the critical standoff, no jet impact occurs on the far side of the bubble with the bubble rebounding
at a higher velocity than the jet. In SCBL studies, light does not appear to be emitted from the bubble
until it reaches a critical distance from the boundary and thereafter light emission increases rapidly to the
effectively infinite fluid result. Kinetic energy is associated with the ring vortex motion which is not available
for compression and adiabatic heating of gas inside the bubble, thus leading to lower interior temperatures.
The latter study near flexible surfaces is associated with modelling the behaviour of bubbles near tissue,
or tissue phantoms. The research is of great importance to laser surgery and extracorporeal shock wave
lithotripsy (ESWL). Observation and computation yield a vast array of results that require explanation.

In this paper a computational technique based on the boundary integral method is developed. The
technique is well established for simply connected bubbles (see e.g. Guerri, Lucca & Prosperetti 1981, Blake,
Taib & Doherty 1986,87) but needs significant adaptation for the doubly connected geometry of a toroidal
bubble. Best (1993) overcame these difficulties by inserting a ‘cut’ across the jet penetrating the bubble
in his earlier paper but later developed a dynamic cut relocation algorithm (Best 1994) that significantly
improved the computational speed and accuracy.

The next section will discuss the background physics to the study, identifying key stages from the initi-
ation of a laser generated bubble through to its collapse and later rebound. This shall be followed by the
development of the computational technique for a simply and doubly connected bubble. Later examples will
be shown for computer generated bubbles at: (i) a range of standoff distances from a rigid boundary, (ii)
near a free surface and (iii) bubbles generated in a shallow liquid layer.

2 Background Physics - Laser Generated Bubbles

It is important to understand the background to the physics of laser-generated bubbles so that we may
better understand the phenomena and to allow the development of realistic models, but also to be aware of
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(a) Idealised schematic of the experimental set-up for (b) Shallow layer schematic
SCBL.

Figure 1: Schematic diagrams.

the limitations of the calculation. Mathematical modelling is after all only an approximation to nature but
through modelling often a better understanding of phenomena can be obtained. In considering the behaviour
of a laser-generated bubble near a boundary a number of stages can be clearly identified although the order
in which they occur will depend on individual circumstances.

The first stage is the initiation stage associated with the firing of the laser which has a length measured
in microseconds (us). The laser generates a plasma in the liquid (usually water), leading to the dissociation
of HoO, the production of non-condensible gases, and from the fluid mechanics viewpoint, shock waves and
high pressures, often as high as 1000 atmospheres or more. The next stage is associated with the bubble
dynamics, and for the most part is relatively slow. Pressures are characterised by atmospheric pressure in
most experiments so the velocity scale will be O((p,/ p)l/ 2) where p, is atmospheric pressure and p is the fluid
density. For future reference this gives a characteristic velocity of about 10ms™!, noting that p, ~ 10°Pa
and p ~ 10°Kgm™3. Thus V ~ (p,/p)'/? is very much less than the speed of sound in water ¢ ~ 1500ms~".
For a typical mm-sized bubble this will give a Reynolds number of 10*~® and an oscillation period T' of
O(100us). The diffusion of vorticity timescale of a?/v yields O(10ms) which is very much larger than the
bubble period. Thus around the laser-generated bubble beyond the first few ps it is reasonable to regard the
fluid mechanics surrounding the bubble as being incompressible, inviscid and irrotational. This will remain
a good approximation at least until jet impact or minimum volume for a non-spherical bubble. Thus the
fluid velocity may be represented by the gradient of a potential function which satisfies Laplace’s equation
in the near-field surrounding the bubble. However, in the far-field the relevant equations should strictly be
the wave equation (see Prosperetti & Lezzi 1986, Blake & Keen 1998).

As alluded to above, the next stage in the behaviour for a non-spherical bubble will either be liquid jet
impact on the far-side of the bubble or minimum volume, depending on the physical circumstances associated
with the generation of the bubble (see results later on the influence of standoff distance). Korobkin (1997)
identifies five stages in jet impact. The first four stages consisting of supersonic, transonic, subsonic and
inertial, no liquid flow is discernable as the timescale is O(M2D/V) where M is the Mach number, V| jet
velocity and D jet diameter yielding a timescale of us. Water hammer pressures of O(pcV') will yield pressure
of up to 1000 atmospheres but these will only prevail for a microsecond or less and are often not recorded
on pressure transducers. The fifth stage using the Korobkin breakdown leads to fluid and bubble surface
motion. Experiments on high speed droplet impact indicate that surface motion is independent of bubble
or droplet size. In terms of the development of this theoretical fluid mechanical model we will ignore the
compressible facets of jet impact and regard the impact as generating an impulsive fluid motion. Thus the
potential on both sides of the ‘cut’, representing the impact site, will receive an impulse II given by

bo — 1 = —%H, 1)
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where the potential ¢, is post- and ¢ is pre-impact. The impulse II is given by

Il = /pdt. (2)

However p is finite, and if we take the limit as the impact times goes to zero, then IT may be assumed to be
zero. Thus the potential does not alter on impact for the purposes of this model. (Actually impact occurs
at a point, having no area, so the force acting will be zero.) At the impact site the velocities will be equated
and taken as an average of the pre-impact velocities as follows,
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where ¢,, is the upper and ¢., the lower surface potential at impact. The actual velocity after impact becomes
the average velocity. Often, in practice, the liquid jet is moving at high speed, typically O(100ms~!), while
the other surface is near stationary.

Thus in taking a ‘cut’ across the jet impact site to form an additional surface we will have continuity in
normal velocity but will be left with a jump A¢ in the potential, given by

I'=A¢ = ¢y — ¢e. (4)

This potential corresponds to the circulation ‘I around the bubble and is the same for any circuit around
the bubble. This assumption requires that we assume that no vortex sheet is generated, regarded by many
as a contentious issue, and certainly in some circumstances a vortex sheet should be included.

After impact a toroidal bubble is formed although the impact stage is very difficult to observe even
with very high speed cameras (upto 10%fps). Ohl et al. (1999) has observed the detailed shock structure
that occurs on jet impact and when the bubble is near to its minimum volume. As far as liquid motion is
concerned, valuable information can be gained from liquid drop studies. Key questions are associated with
the generation of vorticity and the formation of a splash. Typically jet velocities, V', are O(100ms~!) while
a typical jet diameter D for laser generated bubbles might be 0.2mm. This data gives values for the Weber
and Froude number of

273
pDV } ~ 104, LT (5)
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where o is the surface tension and g, gravitational acceleration. From the drop impact studies of Cresswell
& Morton (1995) show that the formation of a vortex ring due to separation of a vortex sheet generated by
a ‘ring of contact’ between the drop and liquid layer occurs when surface tension is important, typically for
W, < 8. In their studies they observed no vortex sheet being formed for an experiment when W, ~ 42 and
F,. = 22 but rather a splash and radial flow instead. These experimental studies therefore provide support
for our neglect of a vortex sheet in our modelling and to concentrate on the propagating splash formation
inside the bubble.

The next stage in the collapse of a bubble concerns the circumstances surrounding minimum volume
(although jet impact can occur slightly after the bubble reaches minimum volume in some situations). The
internal gas dynamics are modelled by assuming an ideal and adiabatic gas, given by the relation

w. - |

V K
Pe = Pv + Do (70> : (6)
where pg is the initial pressure, Vj, initial volume and & is the ratio of specific heats. The temperature of
the gas within the bubble is given by
Va K—1
T=T,| - , 7
(%) ™

where T, is the ambient liquid temperature and V, is the maximum bubble volume of the bubble during
which time the gas equilibriates to the liquid temperature. Near minimum volume compressible effects can
be important with radiation of acoustic energy and the formation of shock waves.
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Finally the bubble rebounds returning to an incompressible flow behaviour but it is much less energetic
with energy losses associated with acoustic radiation, shock waves, viscous dissipation, heat transfer and the
resulting turbulent motion associated with liquid jet impact. It is likely that the most important factor will
be energy losses associated with jet impact.

This section has briefly covered the key physical aspects associated with laser generated bubbles. A
good starting position for modelling the fluid motion as being incompressible, irrotational and inviscid and
to develop a computational technique that predicts the bubble shape, pressure, velocity throughout the
growth, collapse and subsequent rebound of the bubble.

3 The Boundary Integral Method

In modelling the flow fields around vigorous pulsating bubbles near boundaries we assume that the flow field
can be adequately modelled by an incompressible and inviscid liquid that is irrotational. This leads to the
use of a velocity potential ¢ which allows us to develop an integral equation expression from the potential
and unknown normal velocity d¢/dn. Thus for a simply connected bubble with surface S we may write the
integral equation as follows

o)~ [{cwa i @-o@y ma)as )
S

where the Green’s function G(p, q) is given by

1 1 1
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where q’ is the position vector of the image of the point with position vector g in the rigid boundary. The
normal n is taken to be directed into the interior of the bubble, and the coefficient ¢(p) is 1/2 if p € S and
1 if p is the position vector of a point elsewhere in the fluid.

The essence of the approach is that initially either a specified potential is given on the surface of the
bubble or an initial pressure (with zero potential) inside the bubble or a combination of both is provided.

The first kind Fredholm equation for d¢/0n given in (8) is solved computationally following earlier
approaches outlined in Blake, Taib & Doherty (1986), Best (1993) and Tong et al. (1999). With a knowledge
of 9¢/On and ¢ on the bubble surface we may then update the position of given Lagrangian values that are
used to define the surface. The potential ¢ may also be updated by exploiting the dynamic conditions on
the bubble surface which yields the following,

9 _ Lot —a () _pp_ns K
dt—1+2|V¢| a(v> 0%(z 7)+We. (10)

In (10) the following dimensionless qualities have been defined: compression ratio, a = py/Ap; buoyancy
parameter, 62 = pgRn/Ap and Weber number W, = R,,Ap/o. Here, po is the initial pressure inside
the bubble due to the non-condensible part of the gaseous contents of the bubble, ¢ is the gravitational
acceleration, p is the fluid density, R,, is the maximum bubble radius, Vj, the initial bubble volume at time
t, o, the surface tension and K, the curvature. The quantity Ap = po, — Py, Where py, is the ambient
pressure at the bubble location and p, is the vapour pressure. A further important dimensionless parameter
is the standoff parameter, ~, defined as follows

h
R, ’

v = (11)
where h is the distance that the bubble is from the boundary on initiation.

In some circumstances the bubble may collapse asymmetrically, developing a high speed liquid jet which
may thread the bubble completely leading to a toroidal bubble. This creates a problem because the bubble
is now doubly connected. Best (1993,94) overcame this difficulty be creating a ‘cut’, T, across the jet to
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Figure 2: Schematic representation of the transition to a toroidal geometry: (a) just prior to jet impact,
(b) following jet impact with the addition of a cut T, and (¢) dynamic cut relocation from T to T".

once again produce a simply connected domain. Based on earlier discussions in Section 2, a new boundary
integral formulation is obtained,

o) = [ {cwaf @@ wafas-a [ Fwaas (12)
Ty
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This formulation accounts for the circulation A¢ around the bubble. Further details can be found in Best
(1993).

4 Computational Results

In Figures 3-8 graphical output from a range of example calculations for a laser-generated bubble near a
rigid boundary, a free surface and in a shallow layer of liquid. With the exception of two cases, all the results
show the interesting features associated with toroidal bubble behaviour.

Figure 3 shows the pressure contours and velocity vectors associated with a cavitation bubble near a rigid
boundary both prior to and following liquid jet impact. Features to note are the high pressures above the
bubble before jet impact, the high relative velocities in the jet, and the high pressure on the rigid boundary
after impact. The influence of the standoff distance and compression ratio is shown in Figures 4 and 5.
The case of most interest is that shown in Figure 4(b) where jet impact occurs during rebound. In Figure
5(a) a ‘splash’ inside the bubble is clearly evident. The bubble shapes shown in Figures 4(a) and 5(b) are
very similar to experimental observations. Figure 6(a) shows the interesting feature of the existence of a
maximum jet speed at a given standoff distance () for each compression ratio («)). One of the ramifications
of this observation is that for v > ~. the liquid jet does not impact on the far-side of the bubble because the
bubble wall rebounds faster. In Figure 6(b) the temperature is calculated using (7). The lower temperatures
at small « are associated with kinetic energy being tied up with the ring vortex and not being available for
bubble compression.

Figure 7 shows the behaviour of bubbles at different standoff distances from a free surface. In each case
the jet is directed away from the free surface with the jet becoming wider for larger standoff distances. Figure
8 illustrates bubble behavior in a thin fluid layer with potential applications to laser surgery in the eye or in
other shallow layers such as tissue.

5 Conclusions

The boundary integral method has proved to be a highly accurate computational technique for modelling the
fluid mechanics of the first few pulsations of a laser generated bubble near boundaries when inertial forces
predominate over dissipative effects such as viscosity and compressibility. Calculations appear to accurately
reproduce a range of experimental results recorded with very high speed cameras (now up to 100 million
frames per second!) as well as providing further insight into the physics of fluid behaviour by calculating
bubble shape, velocity vectors and pressure fields. The calculations in particular show the shape and speed
of liquid jets and splashes, the pressure field, in particular the sites of intense pressure that could lead to
mechanical defects as well as the likely location for shock formation.
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(a) Just prior to liquid jet impact, time 2.223. (b) Following liquid jet impact, time 2.274.

Figure 3: Velocity vectors and pressure contours for the case « = 100, v = 1.1.
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(a) v = 3. Times are 2.0699 and 2.1608. (b) v = 5. Times are 2.0202 and 2.0675.

Figure 4: Half rendered bubble shapes for &« = 100. The left-hand frame of each pair shows the bubble at
minimum volume. The right-hand frame shows motion at a later time during the rebound phase on the same
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(a) v = 3. Times are 1.9962 and 1.9976. (b) v = 5. Times are 1.9436 and 1.9527.

Figure 5: Half rendered bubble shapes for e = 1000. The left-hand frame of each pair shows the bubble
at minimum volume. The right-hand frame shows motion at a later time during the rebound phase on the
same axes.
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Figure 6: Jet velocities and temperatures as a function of standoff distance.
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(a) v = —0.56. Times are 0.4476, 1.0471 and 1.2749. (b) v = -0.7. (¢) v = —0.85.
Time is 1.2742. Time is 1.4232.

Figure 7: Half rendered shapes for vapour bubble motion near a free surface for a range of standoff distances.
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Figure 8: Half rendered bubble and surface shapes for the motion of a cavitation bubble in a shallow layer
of fluid for the case o = 100, ygp = 0.7 and yps = —0.7 (i.e. D = 1.4). Times are 0.6577 and 1.2891.
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