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Abstract

A preconditioned, homogenous, multiphase, Reynolds Averaged Navier-Stokes model with mass transfer is
presented. Liquid, vapor, and noncondensable gas phases are included. The model is preconditioned in order to
obtain good convergence and accuracy regardless of phasic density ratio or flow velocity. Both incompressible and
finite-acoustic-speed models are presented. Engineering relevant validative and demonstrative unsteady and
transient two and three-dimensional results are given. Transients due to unsteady cavitating flow including shock
waves are captured. In modeling axisymmetric cavitators at zero angle-of-attack with 3-D unsteady RANS,
significant asymmetric flow features are obtained. In comparison with axisymmetric unsteady RANS, capture of
these features |l eads to improved agreement with experimental data. Conditions when such modeling is not necessary
are also demonstrated and identified.

1 I ntroduction

The ability to properly model multiphase flows has significant potential engineering benefit. In particular, sheet
cavitation may occur in submerged high speed vehicles as well as pumps, propellers, nozzles, and numerous other
venues. Traditionally, cavitation has had negative implications associated with damage and/or noise. However, for
high speed submerged vehicles, the reduction in drag associated with a natural or ventilated supercavity has great
potential benefit. Cavitation modeling remains a difficult task, and only recently have full three-dimensional, multi-
phase, Reynolds-Averaged, Navier-Stokes (RANS) tools reached the level of utility that they might be applied for
engineering purposes. Previously, Kunz et al. (2000) have developed and demonstrated a model capable of
representing multiphase homogeneous mixture flows. Venkateswaran et al. (2001) adapted this development to
finite-acoustic-speed multiphase compressible flow. In the current paper, the models of Kunz et al. (200) and
Venkateswaran et al. (2001) are applied to engineering relevant flows. This will serve to further demonstrate and
validate the capabilities of the multiphase RANS model.

Non-equilibrium mass transfer modeling is employed to capture liquid and vapor phasic exchange. The
computational model, designated UNCLE-M, can handle buoyancy effects and the presencef/interaction of
condensable and non-condensable fields. This level of modeling complexity represents the state-of-the-art in CFD
analysis of cavitation. The restrictions in range of applicability associated with inviscid flow, slender body theory
and other simplifying assumptions are not present. In particular, the code can plausibly address the physics
associated with high-speed maneuvers, body-cavity interactions and viscous effects such as flow separation.

The principal interest here isin modeling flow fields dominated by attached cavities. These are presumed to be
sheet cavities amenable to a homogeneous approach. In other words, it is presumed that noneguilibrium interface
dynamics are of negligible magnitude. In addition, for the configurations considered, interface curvatures are very
small, thus the effect of surface tension is not incorporated.

In previous work (Kunz et al. 1999), the fidelity of UNCLE-M has been demonstrated for steady and unsteady
fluid flows. In the work presented here, UNCLE-M will be applied to several configurations. Some of these
configurations represent experimentally documented test cases. For others, the result demonstrates a capability to
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capture aknown, but rarely captured physical phenomenon. Model results will be presented for ventilated, vaporous,
and combined ventilation and vaporous cavitation. Both steady (averaged) and unsteady behavior of the flow will be
presented and compared with data. In addition, interesting unsteady numerical results will be presented in a field
form for comparison with photographic data. Some of the most intriguing results are due to the fundamentally three-
dimensional nature of turbulent multiphase flow. By comparison of the numerical, measured, and well understood,
demonstrative results, reliability and capabilities of the numerical and physical modeling may be understood.

One of the complicating phenomena associated with underwater multiphase flows is the presence and effect of
compressibility in aflow that islargely incompressible. For many applications, such as flow around a hydrofaoil, this
is due to the decrease, relative to any pure constituent phase, in acoustic speed for a multiphase mixture. Then
velocities normally associated with subsonic, incompressible flows result in supersonic conditions and associated
strong wave formations such as unsteady shocks (Arndt et al. 2000). To directly model flows containing shocks, a
suitable representation of compressible flow is necessary. Also, in these flows, liquid vapor mass transfer is
important. The goa here is to present, demonstrate and validate a three-dimensional, RANS based multiphase
method capable of capturing the density ratios, Reynolds Numbers, Mach Numbers, and relevant flow features such
as shocks and overall inherent and forced unsteadiness associated with these flows.

Nomenclature

Cy mass transfer model constants t,t,, At physical time, mean flow time scale,

‘ time step
Cq drag coefficient U velocity magnitude

: 2, | ventilation flow coefficient + dimensionless wall distance

Co=Q/(U_d y

Q=Q/(U.d) (PYU)/ iy,
c sonic velocity a volume fraction
d body diameter density
f cycling frequency (Hz o -

yeling frequency (Hz) cavitation number ( ELpZ)
1/2p,U;,

-+ mass transfer rates Subscripts, Superscripts:
m, m
P, Pc pressure, cavity/vaporization | d body diameter

pressure
Q volumetric flow rate I liquid
Rey Reynolds number based on body | ng non-condensable gas
diameter

Str Strouhal frequency (fD)/U,, % condensabl e vapor/vaporization
s arc length along configuration 0 free-stream/reference value

2 Model Equations

For the purposes of analysis and development of appropriate preconditioning, theoretical development of the
underlying differential model has been presented previously (Kunz 2000 and Venkateswaran 2001). Here, the
governing model equations solved for three-phase flow resemble the equations employed in single-phase multi-
component reacting-gas-mixture flows. Both the incompressible and finite-acoustic-speed compressible constituent
phase form of the equations are applied here. In the finite-acoustic-speed formulation of the three-phase equations,
each constituent phase is governed by a linear state relation between density and pressure. This corresponds to a
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constant acoustic speed for each isolated constituent phase but a mixture sound speed dependent on constituent
make-up and local pressure. Similarly to the previous presentations, here, the equations for each formulation are
solved in an absolutely conservative fashion. A standard high Reynolds number formkek;tieo-equation

model with wall functions provides turbulence closure. The eigenvalues of the associated systems and the
preconditioning forms have been previously discussed and lead to good convergence and accuracy at all phasic
density ratios and flow velocities. Therefore, the model equations are not presented here.

In the finite-acoustic-speed model, the density of each constituent is linearly dependent on pressure. This
linearized compressibility is based on a constant constituent phasic speed of sound. This is sufficient to resolve the
correct isothermal sound speed for the homogeneous mixture as a function of the constituent volume fractions. The
correct mixture sound speed is clearly represented in the eigenvalues of the inviscid flux Jacobians. In fact, as is well
known, analysis of the flux Jacobians is a proper method for deriving the acoustic speed, and the resulting
expression is given in Equation 1. From this equation, the dramatic effect of sound speed attenuation due to mixture
flows may be seen. This is presented in Figure 1 for a representative liquid vapor mixture.

c= 1 @
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Additional Physical M odeling

The finite rate mass transfer model equations solved here have been described previously (e.g. Kunz 2000).
The mass transfer terms appear in the continuity relations pertaining to conservation of liquid and vapor. For

transformation of liquid to vaporm  is modeled as being proportional to the product of the liquid volume fraction
and the difference between the computational cell pressure and the vapor pressure. This model is similar to the one
used by Merkle et al. (1998) for both evaporation and condensation. For transformation of vapor to liquid, a

simplified form of the Ginzburg-Landau potential is used for the mass transfermrate . The terms themselves
represent either a source or sink in the continuity relations. Recall that in the present approach, there are a number of
continuity relations equal to the number of phases, and, in an absolutely conservative formulation, either mass or
mixture volume may be conserved variables. Relations for liquid destruction and liquid production are given in
Equation 2.

r,h' - C(ppvulMlN[o’p_pV} m+ - C(ppv(a|_ung)2(l_a|)

(500)t,, 2

i 20

C, is an empirical constant. Both mass transfer rates are nondimensionalized with respect to a mean flow time

scale. For all work presented hetg,= 1 and- 10°. These values were arrived at by an investigation of average

attached cavity lengths over ogives and comparison with experimental results of Rouse and McNown (1948). A
demonstration of the comparison and sensitivity to the values of the constants are given in Figure 2.

3 Numerical Method

The described model equations are solved in the UNCLE-M code. This code has its origins as the UNCLE code,
developed for incompressible flows at Mississippi State University (Taylor et al. 1995). Later this code was
extended to multiphase mixtures, substantially revised, and named UNCLE-M (Kunz 2000). The code is structured,
multi-block, implicit and parallel with upwind flux-difference splitting for the spatial discretization and Gauss-
Seidel relaxation for the inversion of the implicit operator. Primitive variable (MUSCL) interpolation with van
Albada limiting was applied to retain higher order accuracy in flow fields containing physical discontinuities. In
keeping with the finding of Kunz (2000), only those source terms associated with vapor production were linearized
for inclusion in the implicit linear system left-hand-side. Terms associated with liquid production were treated
explicitly and under-relaxed with a factor of 0.1. At each pseudo-time step, the turbulence transport equations were
solved subsequent to solution of the mean flow equations. During this investigation, attention was given to the
necessity of temporal and spatial discretization independence. As a requirement, to accommodate the use of wall
functions, for regions of attached liquid flow, fine-grid near-wall points were established at locations yielding

10<y*<100. Further details regarding the numerical method are available in Kunz (2000).
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Figure 1: Homogeneous isothermal liquid-vapor mixture sound speed versus vapor volume fraction. Liquid sound

speed, 1500m/s. Pure vapor sound speed 429m/s. Pure liquid density 1éOBklgém/apor density 0.025kg7m
From Equation 1.
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Figure 2: Comparison of effect of rate constants (Equation 2) and experimental data (Rouse and McNown 1948) for
naturally cavitating flow over a hemispherical head and cylindrical afterbody. Steady, incompressible constituent
phase (infinite sound speed) model results.

4 Results

Model results are presented capturing unsteady and transient flows. Two-dimensional, axisymmetric, and fully
three-dimensional cases have been included. It is the intention here to resolve the physics necessary to render the
flowfield during partial or super cavitation. Each of these cases represents a relatively complex time-dependent
engineering flow and illustrates the utility of the method for a variety of two and three phase flows with and without
mass transfer. In each case, the density ratio of the liquid phase to the gaseous phases is three or more orders of
magnitude. Some of these cases are presented in comparison to experimentally obtained data. Therefore, these
results serve to further validate for the modeling method. This validation has been previously initiated (Kunz 2000,
Kunz 1999, and Lindau 2000).

Cavitating Flow in a Venturi

Stutz and Reboud (1997) and Reboud et al. (1998) have performed detailed unsteady, flowfield measurements
of vaporous cavitating flow in the two-dimensional Venturi section of a water tunnel. The test section captures
significant physics found on the suction side in a blade passage. Thus their experiment and the current model results
represent partially cavitating flow in a turbomachinery-like environment. In Figure 3, the average and RMS
fluctuating portions of the liquid volume fraction is presented based on the modeled flow. This figure serves to
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illustrate the geometry of the modeled test section as well as the results obtained during modeling. The test section
had a height at the throat equal to 43.7 mm and a constant width equal to 44 mm. The nominal cavity length for
comparison here was 80 mm in the horizontal direction. The experiments were conducted at Reynolds numbers

based on cavity length from 4.3X1® 2.1x16 and at a range of cavitation numbers, based on the upstream pressure
and velocity, from 0.6 to 0.75. It may be seen from the figure that although there is a high degree of unsteadiness in
the region of the cavitating flow, this unsteadiness is confined to the test section area. This is consistent with the
commentary of Reboud et al. (1998).

Figure 3: Computational result. Unsteady, naturally cavitating, two-dimensional fIQWYFlezl(’f’ (based on
cavity length). Modeling of a two-dimensional cavitation tunnel. Reported in Stutz and Reboud (1997).
a) Mean liquid volume fraction. Red=1. Blue=0.

b) RMS fluctuating component of liquid volume fraction. Red=0.5. Blue=0.

In Figure 4, the current computational results are presented with the experimental data of Reboud et al. (1998).
It is apparent that the unsteady model results are in reasonable agreement with the experiments. In the figure, results
have been plotted at the five measurement stations used in the experiments. Each of these stations is given at a
horizontal position. The experimental cavity was initiated due to the suction peak on the lower surface of the throat
of the test section, a reference position of x=0. Based upon these results, the relative closeness of the model to
experimental cavities was judged reasonable. In part (a) of the figure, the mean vapor volume fraction is plotted at
the five axial stations. Considering the great difficulty in capturing flow detail in an unsteady two-phase flow, the
level of agreement shown is again, reasonable. Clearly the model tends to over estimate the void fraction,
particularly at the forward region of the cavity, at x=22.5mm. However, the average quantities are in excellent
agreement at the tail end. Similarly reasonable agreement is demonstrated with the unsteady portion of the RMS
void fraction, part (b). Here the error is greater in the closure region, at x=60mm and x=80mm. Considering the
difficulty of modeling in the closure region, this level of agreement is also reasonable. In part (c), the average axial
velocity is given at the five measurement stations. It should be noted that, by application of a two-phase Navier-
Stokes model based on a barotropic state law, Reboud et al. (1998) were able to obtain similarly good agreement
with the experimental data.

The finite-acoustic-speed form of UNCLE-M was also applied to this two-dimensional cavitation tunnel
experiment. In Figure 5, a particularly interesting result is shown. At four points in time, the evolution of a model
cavity collapse has been illustrated. At each time step shown, in the upper portion of the figure, the liquid volume
fraction is shown. Here the capabilities of the finite-acoustic-speed model to tackle problems associated with
cavitation damage have been demonstrated. During the initial transient, prior to establishment of a cavity cycle, both
the incompressible and finite-acoustic-speed forms of UNCLE-M exhibited a high degree of unsteadiness and some
cavity pinching. However, in the incompressible model, the collapse of the pinched cavity does not lead to a
significant overpressure. As has been discussed, the finite-acoustic-speed model has the physical mechanism to
translate a cavity collapse into a nonlinear pressure wave that rapidly coalesces into a shock. It has been
demonstrated previously (Venkateswaran 2001) that the finite-acoustic-speed model contains the proper physics
needed to correctly track unsteady two-phase shock waves. Here the physical mechanism to evolve the collapse of a
cavity and subsequent shock wave formation and evolution has been shown.

Ventilated Axisymmetric Cavity Flow

Stinebring et al. (1979 and 1983) have performed steady and unsteady flow measurements of ventilated cavity
flow over a conical head and cylinder. Here, the model results based on three different ventilation flow rates are

compared to data. In their experiments, & déne and cylindrical afterbody were assembled with six ventilation
ports. The ports were 0.635 mm in diameter and were installed, at equal circumferential intervals, just downstream
of the corner joining the cone and cylinder. Flow of nhoncondensable gas through these ports was precisely controlled
and relevant cavity data were recorded with several methods described by Stinebring et al. (1979 and 1983).
Experimental results obtained at Reynolds numbers, based on model diameter, from 230,000 to 390,000 were
compared to the computational model. For the model, the Reynolds number was 136,000 and the ports were
modeled by inserting noncondensable gas, perpendicular to the free stream over a region of 0.635 mm in axial
extent, just downstream of the corner joining the cone and cylinder. Due to the fully turbulent nature of the
computational model and the domination of the flowfield by the separated two-phase region, it is suspected that the
discrepancy in Reynolds numbers should have little effect on the overall results
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Figure 4: Comparison of modeled, unsteady cavitating flow to measurements at five horizontal stations (Reboud et
al. 1998). y-vertical distance from wall. x-horizontal distance downstream of throat.

a) Mean vapor volume fractior.p).

b) Fluctuating RMS vapor volume fraction.
(Solid line indicates,,=0. Dashed line indicateg,=0.5.)

c) Mean horizontal velocity.
d) Fluctuating RMS horizontal velocity.
(Horizontal bars at stations indicate relative scale of a 12m/s velocity, the approximate free stream).

Figure 6 contains illustrative results from the modeled ventilated cavity flow over the cone and cylinder. The
ventilation flow rate is given, nondimensionally, in terms of a flow coeffici€qt, Contours of modeled liquid

volume fraction are shown with selected streamlines. Red indicates pure liquid, and blue indicates pure gas. As
illustrated by the streamlines, the gas cavity is dominated by recirculating flow. This flow tends to periodically eject
gas downstream. This ejection concurs with periodic modulation of the cavity shape. As may also be seen in the
figure, the outer boundary of the cavity is also concurrent with a streamline. Hence the profile drag of the ogive is
modulated at the same frequency. This modulation occurs at a frequency similar to the rate observed for vaporous
cavities. The frequency of cavity modulation is at a rate determined by the mean length of the cavity. For flows over
ogives at zero angle of attack and moderate cavitation numbers, this mean length is determined by the cavity
pressure which is equivalently represented as the cavitation humber (Stinebring and Holl 1979). Thus, the cycle
frequency is roughly independent of whether the cavity is vaporous or ventilated. However, for a given cavitation
number, the dominant periodic motion of ventilated cavities is less prominent than during vaporous cavity flow
(Stinebring et al. 1983).

Figure 7 (a) contains a comparison the modeled and measured cavitation numbers for given ventilation flow
coefficients. The cavity numbar, is determined by the average minimum pressure in the cavity downstream of the
injector. In the model and in the experiments, the cavity pressurejas found approximately one model radius
downstream of the port. This serves to illustrate a difference between the modeled flow which is truly axisymmetric,
and the actual flow which is most appropriately described as periodic. Fortunately, in the discussion of the
experiments (Stinebring and Holl 1979) it was noted that the cavity length should be well correlated with the
cavitation number. This relation is shown in Figure 7 (b). Here the model cavity pressure has been presented as a
cavitation number and compared with measurements from Stinebring and Holl (1979). As is clear in the figure, the
model results agree with the measurements, and comparison of other physical phenomena is made based on
cavitation number rather than ventilation flow rate.

In Figure 8, a portion of the drag history, defined as the integrated axial pressure force normalized by the free
stream dynamic head (May 1975), from modeled flow over a ventilated cone and cylinder at ventilation flow rate of
Co=0.05 ¢=0.26) is shown. Here the rather complex model cycle is illustrated over an approximate period. The
cycle is more easily discerned by comparison of the drag history to the evolving flowfield in Figure 9. Here, the
same model cycle is presented with contours of liquid volume fraction around the region of the cavity flow.
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Figure 5: Finite Acoustic Speed Model. Flow during collapse of a pinched cavity. Liquid volume fraction: Red,
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Figure 6: Snapshots of unsteady, modeled ventilated cavity flow over a conical head and cylinder. Contours of
liquid volume fraction and selected streamlines. Red=1. Blue=0.

a) Cy=0.039.

b) Co=0.05.

c) Co=0.078. (To better illustrate the cavity flow, (c) is presented in a reduced size relative to (a) and (b).)

In Figure 9, the oscillatory behavior of the cavity flow is well illustrated. The coloring has been adjusted such
that a liquid volume fraction value greater than 0.5 is flooded red, and values of zero are dark blue. Thus the
differences of volume fraction within the cavity is shown in greater detail, and the complete cavity cycle may be
discerned. It is notable, as illustrated in Figure 8, that the cycle is made up of multiple local maxima in profile drag.
This fits with the previously mentioned experimental observation regarding the lack of prominence of a dominant
frequency during ventilated cavitation. Thus the cycle is complex and not readily obtained from zero-dimensional
information such as drag history. The complete cycle, in the figures, is denoted by the first and last local drag
minima shown. By carefully stepping through time history snapshots such as shown in Figure 9, and comparing
these to the drag history, it was possible to determine the appropriate definition of the period.

In Figure 10, modeled and measured cavity cycling frequency is compared for ventilated flow over the conical
head and cylinder. Here the experimental results (Stinebring et al. 1983) over a range of cavitation numbers and at
three free-stream values of velocity are compared to the modeled flow. The modeled flow is given at three cavitation
numbers, 0.2, 0.26, and 0.28. The agreement with data at the lowest cavitation number (highest dimensionless
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Figure 7: Comparison of modeled and measured (Stinebring and Holl 1979) ventilated cavity flow over a conical
head and cylinder.
a) Cavity pressurer, versus ventilation rate,(£b) Cavity pressurer, versus cavity length L/d.
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Figure 8: Profile drag, & history spanning an approximate model cycle. Dimensionless tigél.tModeled
ventilated cavity flow over a conical head and cylindgy=@.05.

ventilation rate) is excellent. At the higher cavitation numbers, there is a small divergence of modeled results from
the measurements. However the proper trends are well captured. In addition, at lower ventilation flow rates, the
spacing of the ventilation ports and other important length scales become larger relative to the cavity length. Thus, it
is suspected that unmodeled three-dimensional effects on cavity behavior will be more significant at lower

ventilation flow rates.

Fully Three-Dimensional Naturally Cavitating Flow

Turbulent, naturally cavitating flow over axisymmetric bodies is known to be a highly nonlinear and three-
dimensional event. This is clearly illustrated in Figure 11. Here, a photograph during water tunnel testing of a blunt
cavitator at zero angle-of-attack=0.35, and Rg=150,000 is shown in part (a) to be compared and contrasted to

the model result in part (b). To obtain the model result, turbulent vaporous cavitating flow over a blunt cavitator was
modeledo was set to 0.4 and Revas 148,000. An appropriate high Reynolds number grid with approximately 1.2

million nodes was used. The snapshot of part (b) represents a physical time slice taken after a clear model cavity
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Figure 9: Modeled ventilated cavity cycley€0.05. Liquid volume fraction contours. Red>0.5. Blue=0. Time given
in dimensionless units, tL/d.
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Figure 10: Comparison of modeled and measured (Stinebring et al. 1983) ventilated cavity flow over a conical head
and cylinder. Cavity cycling frequency versus cavity pressure.

cycle had been established. In the figure, an isosurfaeg@ has been presented with selected streamlines, and

the surface of the cylinder has been colored by volume fradtlenstreamlines are merely suggestive (but helpful),

as they have been generated based on instantaneous velocity vectors. Clearly in neither the model result nor the
photograph is the flowfield in and around the cavity axisymmetric. It is suspected that physical, chaotic, dynamic
interdependencies are responsible. For instance, there is little likelihood of obtaining purely axisymmetric conditions
in even the most well controlled environments. Even the identification of all factors necessary to be controlled is a
difficult task. This is compounded by the influence of highly nonlinear turbulent flow dominated by phase transition,
etc. It is not suggested that, in obtaining the result of Figure 11 (b), the exact causal mechanism of the three
dimensional and unsteady flow has been reproduced. Rather it is suggested that via an adequate level of modeling,
the real flow has been well captured. Positive understanding of the causal mechanisms is a subject for further
research.

Here a striking example of the divergence of three-dimensional and axisymmetric modeling is given. A sample
of the results obtained by three-dimensional modeling of vaporous cavitation over a blunt ogive at zero angle of
attack are presented in Figure 11 (b) and Figure 13. These results appear to agree with both significant qualitative
and quantitative experimental observations. As in the experiment, the modeled reentrant flow has been observed to
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a)

Figure 11: Blunt cavitator at zero angle-of-attack:

a) In water tunnel at=0.35. (Stinebring 1976)

b) Model result from UNCLE-M a#=0.4. Isosurface (translucent)sgt0.5. Selected (instantaneous) streamlines.
Surface of cylinder colored hy. Red=liquid. Blue=vapor.

follow a helical pattern. This helical flow revolves around the circumference of the cylinder. This revolution is
driven by a complex reentrant flow. The flow emanates from the high pressure region downstream of the cavity.
This high pressure region is situated at the aft end of the azimuthal section of the cavity of greatest axial extent. This
area of the surface of the cylinder contains the stagnation point of an imagieanypath. This streampath follows

the outer edge of the cavity along that azimuthal sector. It is recalled again that the cavitation number of flow over
axisymmetric bodies is highly correlated with mean cavity length. Thus, at that instant in time, this streampath traces
a cavity profile representing an instantaneous minimum cavitation number. A maximum instantaneous cavitation
number is similarly related to the axial streampath outlining the cavity of minimum axial extent. The correct
cavitation number lies between this minimum and maximum. The reentrant flow tends to move away from this
stagnation region. During its initial formation, due perhaps to turbulent fluctuations, the reentrant flow was initially
driven and then moved permanently in a helical path. At the same time the helical path was established, other
aspects of the flow tended to cause a cavity cycle that is largely axial. This axial cycle fits the typical observations of
reentrant flow (Stinebring et al. 1979, 1983, and May 1975). This axial motion is observable in the snapshots and is
also well captured by the profile drag coefficient history given in Figure 12. Here the drag history has been given
over a model cycle as defined by the three-dimensional flow. Clearly the zero-dimensional drag coefficient is
insufficient, by itself, to provide the true model cycle. However by examination of Figure 12 in conjunction with
Figure 13, snapshots of the three-dimensional flowfield, it is possible to deduce the model cycle. The axial cycle
may be nearly modeled, in a linearized simplification, as superimposed on the previously discussed circumferential
motion. The circumferential motion is not divisible precisely by an integer number of axial periods. In fact the axial
cycle is not regular and has a poorly defined amplitude. Therefore, this cavity cycle is appropriately described as
nonlinear and quasi-periodic.

Due to the observed helical (not symmetric) nature of the reentrant region, it was necessary, experimentally, to
use high speed movies to determine the period cavity cycling (Stinebring 1975, 1983, and personal
communications). Generally two consecutive observed cycles were required to determine the reported cycle. This
would then coincide with the cycle determined by a complete revolution of the reentrant jet. This is the cycle
reported in three-dimensional model results of Figure 14. Here the model results from the current three-dimensional
modeling are compared with previous two-dimensional results (Lindau 2000) and experimental observations
(Stinebring 1983).

Three-Dimensional Supercavitating Transient

The authors are also interested in the hydrodynamic performance of supercavitating vehicles in maneuvers. Of
particular interest are predicted transient forces and moments, as well as transient cavity behavior, which are
important in the design of vehicle control systems and gas ventilation schemes.

In Figure 15 we present a set of preliminary prescribed motion results for a notional supercavitating vehicle.
Figure 15 (a) illustrates a view of the geometry, which has a relatively blunt cavitator and three annular ventilation
ports with aft oriented gas deflectors. A cavity gas ventilation rate is prescribed that is sufficient to enshroud the
entire vehicle during steady flight. A gas propellant flow rate is also specified at the exhaust nozzle. For this
analysis, the gas flow is assumed incompressible. A prescribed pitch-up-pitch-down maneuver is specified (see
Figure 15 (i). A non-dimensional timestepAfit,o; = .09473 was specified, whergit= LyepicidUoo- A 1,218,536

vertex grid was used. The simulation was run on 48 processors of a Cray T3E. Figure 15 (b) through (h) shows
several snapshots of the evolving cavity during the maneuver, as designated by isosurfaces of liquid volume fraction
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Figure 12: Profile drag, § history spanning an approximate model cycle. Dimensionless tirgél.tModeled
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Figure 13: Snapshots of modeled vaporous cavitatief.275. Translucent isosurfacengt0.5. Surface of
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Figure 14: Cavity cycling frequency versus cavitation number. Vaporous cavitation over blunt cylinder. Comparison
of experimental (Stinebring et al. 1983), model axisymmetric, and model three-dimensional results.

= 0.5. A three-field simulation was carried out. Vaporous cavitation occurs upstream of the first gas deflector.
Clearly evident is the significant perturbation in the cavity for this maneuver. Indeed, the cavity intersects the body
at t/es = 47.4. Also, natural cavitation near the leading edge is not sufficient to keep the first injection port

unwetted. Figure 15 (i) shows the predicted lift history for the vehicle during the maneuver, as well as the prescribed
angle-of-attack.

5 Summary and Conclusions

A model formulation for the computation of multi-phase mixture flows with appropriate preconditioning resulting in

an inviscid system, with well conditioned eigenvalues, independent of density ratio, has been applied. In this model,
designated UNCLE-M, flows are assumed to be in homogeneous equilibrium, and each phase is represented as a
separate species with an attendant equation of state. In the computational implementation, the model allows finite
rate mass transfer to take place between a liquid and vapor phase, and maintains an additional phase for the
representation of a noncondensable gas.

Results have been given demonstrating capabilities of the computational model. Complex two-dimensional,
three-dimensional, and unsteady representative and validative flows have been examined. Supportive experimental
results have been included, and detailed discussion of the modeled flow features has been given. The differential and
computational form as well as the solution of the fully three-dimensional, three-phase model with mass transfer has
been presented.

The validative results include modeled vaporous cavity flow in a Venturi section previously reported by Stutz
and Reboud (1997) and Reboud et al. (1998), modeled ventilated cavity flow over a conical forebody and cylinder
previously reported by Stinebring et al. (1979 and 1983), and modeled vaporous cavitating flow over a blunt
cylinder previously reported by Stinebring et al. (1983). In each of these cases the flow was unsteady, complex, and
almost certainly three-dimensional. In the case of the Venturi (Reboud et al. 1998), two-dimensional model results
were good considering the complex unsteady nature of the flow and the high level of detail provided by the
experimental results. However, the transverse (not modeled) dimension of the test section was 44 mm while the
height was 43.7 mm. Based on other modeling and experimental evidence offered here, it is suspected that three-
dimensional modeling of such a Venturi section would be useful.

In the case of the flow over axisymmetric bodies at zero angle of attack, it is significant that the axisymmetric
modeling of ventilated cavitation is apparently sufficient while the model results for vaporous cavitation shown in
Figure 14 and reported (Lindau 2000) are not. A suspect cause for this difference is fairly straightforward. In the
tested, ventilated, conical cavitator, ventilation ports were installed at six circumferentially distributed locations,
equidistant apart, just aft of the corner joining the cone to the cylinder. Thus the ventilation ports would tend to
continuously feed the cavity in a symmetric manner. It is likely, even in the presence of strong flow nonlinearities,
that this arrangement would have tended to reinforce symmetry. In addition compared to the blunt cylindrical
cavitator, the lower drag conical head would be likely to produce a less violent, more symmetric flow in the cavity
closure region. As is clear from the experimental evidence given in Figure 11, vaporous cavitation over blunt objects
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Figure 15:EElements of 3-D unsteady simulation of prescribed maneuver of a notional high speed supercavitating
vehicle.

a) View of geometry.
b)-h) Cavity surface shape vs. time as indicated by isosurfage 6f5.
i) Prescribed angle-of-attack and lift history vs. time.

at moderate cavity numbers tends to be asymmetric. This would have been particularly true for higher drag objects
at higher cavitation numbers. This is demonstrated in Figure 14, where the axisymmetric model cycle frequency
tends to diverge from the experimental data as cavitation number is increased.
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Success with geometrically simple validative results suggest that the modeling method may be applied to more
complicated design level tasks with confidence. This has been demonstrated here in the case of a three-phase model
of a supercavitating vehicle undergoing a transient maneuver. With future application of the newly formulated fully
compressible model (Lindau 2001) planned for complex geometries, it is suspected that UNCLE-M will be a useful
tool for supercavitating design efforts.
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